
GNN: Graph Generation

Harish Rajagopal
Seminar in Deep Neural Networks

11 May 2021

Generative Models

Generative models model the joint probability distribution
P(X, Y) over the input X and output Y.

Source: https://duphan.wordpress.com/2016/10/27/gaussian-discriminant-analysis-and-logistic-regression/

Generative models can be used to generate examples.

1 51

https://duphan.wordpress.com/2016/10/27/gaussian-discriminant-analysis-and-logistic-regression/

Deep Generative Models

They are generative models that use deep learning, e.g.
GPT-1/2/3, VAEs, GANs.

(a) GPT2 [6] generates text from the
given prompt (b) Imaginary celebrities generated

by Progressive GAN [3]

2 51

Graph Generation

Graphs are used to model data
containing relations among
distinct entities.

Graph generation aims to
generate graphs with some
desired properties.

Source:
https://news.mit.edu/2013/new-approach-to-vertex-
connectivity-could-maximize-networks-bandwidth-1224

3 51

https://news.mit.edu/2013/new-approach-to-vertex-connectivity-could-maximize-networks-bandwidth-1224
https://news.mit.edu/2013/new-approach-to-vertex-connectivity-could-maximize-networks-bandwidth-1224

Example: Molecule Generation

Figure: Schematic comparison of material discovery paradigms [7]

4 51

Challenges

▶ Discreteness: Graphs are discrete structures
▶ Variability: Graphs can be of different sizes
▶ Ordering: Graph nodes and edges are unordered

5 51

Approaches

Working with graphs as adjacency matrices helps tackle the
discreteness problem.

This leads to two popular classes of deep graph generators:

▶ Single-Shot: Outputs the entire adjacency matrix at once
▶ Autoregressive: Sequentially outputs each row of the
adjacency matrix

6 51

Single-Shot Models

Single-Shot Models

These tackle the variability problem by fixing a maximum size for
the graph. Then they prune the adjacency matrix.

Different models tackle the ordering problem in different ways.

We study the following single-shot models:

▶ GraphVAE [8]
▶ MolGAN [1]

7 51

Single-Shot Models

GraphVAE

GraphVAE

GraphVAE uses a Variational Autoencoder [4] (VAE) setup.

8 51

GraphVAE Encoder

It is a GNN that takes
G = (A, E, F) and the graph
properties y.

It models qϕ(z|G) for the latent
vector z.

9 51

GraphVAE Decoder

It is an MLP that takes a latent
vector z and the graph
properties y.

It models pθ(G|z) with the
probabilistic adjacency matrix Ã
and the class probabilities Ẽ, F̃.

10 51

The Probabilistic Adjacency Matrix

The PAM Ã is of size k× k, where
k is the maximum graph size.

Each element is a sigmoid
probability, which is
thresholded during inference.

11 51

The Probabilistic Adjacency Matrix

The diagonal element Ãii shows
whether to keep node i.

The off-diagonal element Ãij
shows whether to keep edge
i→ j.

1

2

3

4

5

1 2

5 3

12 51

Graph Generation

During training, the decoder will
be fed z ∼ qϕ(z|G).

During inference, it will be fed
z ∼ N (0, I).

13 51

The Ordering Problem

The decoder loss consists of the
cross-entropy loss for Ã, Ẽ and F̃.

However, due to the ordering
problem, the node orders
between G̃ and G can differ.

1 2

5 3

2 3

1 4

1
2

3
4

5

1
2

3
4

14 51

Approximate Graph Matching

Approximate graph matching is
used to assign nodes from G̃ to
nodes in G.

This gives us X ∈ {0, 1}k×n,
where Xij = 1 iff node i ∈ G̃ is
assigned to node j ∈ G.

However, it is very slow.

1 2

5 3

2 3

1 4

1
2

3
4

5

1
2

3
4

Graph Matching

15 51

GraphVAE Decoder Loss

The cross-entropy losses are now calculated for the following:

A′k×k = XAX⊺ — Ãk×k
En×n — Ẽ′n×n = X⊺ẼX
Fn — F̃′n = X⊺F̃

The final decoder loss is a weighted sum of these loss terms.

16 51

GraphVAE Results

Figure: GraphVAE inputs (in green) and outputs

17 51

Single-Shot Models

MolGAN

MolGAN

MolGAN uses a Generative Adversarial Network [2] (GAN) setup.

18 51

MolGAN Generator

It is an MLP that takes a latent
vector z ∼ N (0, 1).

It generates the PAM A and the
node attributes X.

19 51

The Probabilistic Adjacency Matrix

MolGAN tackles the variability problem using the PAM.

During inference, instead of pruning the PAM, they sample from
the probabilities.

20 51

MolGAN Reward Network

It is a GNN that takes the PAM A
and the node attributes X.

It returns the reward for the
input molecule’s properties.

21 51

MolGAN Discriminator

It is another GNN that takes the
PAM A and the node attributes X.

It predicts whether its inputs are
from the dataset or generated
by the generator.

22 51

The GAN in MolGAN

The generator aims to fool the discriminator, while the
discriminator aims to catch the generator.

LGAN(Disc(G),Disc(Gen(z)))

The generator aims to minimize the GAN loss, while the
discriminator aims to maximize it.

23 51

The GAN Loss

The GAN loss is:

LGAN(Disc(G),Disc(Gen(z)))

The generator’s outputs must
pass through the discriminator
before interacting with the
ground-truth.

24 51

The Ordering Problem

Since the discriminator is a GNN,
it is invariant to node ordering.

Thus, the ordering problem
does not affect MolGAN.

25 51

MolGAN Results

Figure: QM9 samples vs MolGAN outputs

26 51

GraphVAE vs MolGAN

GraphVAE MolGAN

Architecture Encoder-decoder Generator-
discriminator

PAM Thresholding Sampling
Graph-matching Required, expensive None
Convergence VAEs are easier to train GANs are hard to train

27 51

Autoregressive Models

Autoregressive Models

Autoregressive models tackle the variability problem by
generating the rows of the adjacency matrix sequentially.

They can decide to stop generating by outputting a special token.

28 51

Autoregressive Models

These models usually deal with the ordering problem by
considering all node orders from a set of canonical orderings.

We study the following autoregressive models:

▶ GraphRNN [9]
▶ GRAN [5]

29 51

Autoregressive Models

GraphRNN

GraphRNN

GraphRNN uses Gated Recurrent Units (GRUs) in a hierarchical
setup.

30 51

Graph-level RNN

Let the sequence of rows of the adjacency matrix be Sπ.

A graph-level RNN generates nodes by modelling p(Sπi |S
π
<i).

These variable-length sequences help solve the variability
problem.

31 51

Edge-level RNN

To capture complex edge dependencies, p(Sπi |S
π
<i) is decomposed as:

p(Sπi |S
π
<i) =

i−1∏
j=1

p(Sπi,j|S
π
i,<j, S

π
<i)

This is done using an edge-level RNN to generate edges of each node.

32 51

GraphRNN Orderings

GraphRNN is optimized using SGD to maximize p(G):

p(G) =
∑
π∈Π

p(Sπ)

Π is the set of all orderings. Thus, it solves the ordering problem.

However, |Π| = O(N!). Hence, GraphRNN restricts it to a set of
canonical orderings based on BFS.

33 51

BFS Canonical Orderings

v2 v3

v6v5v4

v1

v7 v8

v4 v5 v6v1 v2 v3v7 v8

Multiple node orderings can
map to the same BFS ordering.

Considering only unique BFS
orderings, |ΠBFS| can drop
substantially.

34 51

More Benefits of BFS

v2 v3

v6v5v4

v1

v7 v8

BFS Queue

v4 v5 v6v3

v6 will be added to the BFS
queue just after v3 is removed.

Thus, the gap between v3 and v6
in the BFS order cannot exceed
the max size of the BFS queue.

35 51

More Benefits of BFS

If we know the max size M of the BFS queue, then the edge-level
RNN can skip (0, . . . , i−M− 1).

36 51

GraphRNN Results

Figure: GraphRNN results on various datasets

37 51

Autoregressive Models

GRAN

GRAN

Graph Recurrent Attention Networks (GRANs) are a family of
RNN-based models with attention.

38 51

GRAN Canonical Orderings

GRANs use the same loss and setup as GraphRNN:

p(G) =
∑
π∈Q

p(Lπ) ≥
∑
π∈Q̃

p(Lπ)

where Q̃ ⊆ Q

However, instead of using BFS for Q̃, they use a combination of
various techniques.

39 51

GRAN Architecture

Downsides of hierarchical RNNs:

▶ RNNs suffer from vanishing gradients.
▶ Each graph-level RNN step cannot be run in parallel.

Thus, GRANs use a GNN at the graph-level to generate edges.

40 51

GNN Setup

The GNN uses the graph generated in the previous step to
generate B new nodes.

41 51

GNN Initialization

The initial node representations of the GNN are:

h0i =

{
WLπi + b i ≤ B(t− 1)
0 otherwise

Here, Lπi ∈ RN, where N is the maximum size of the graph.

42 51

GNN Updates

The GNN update step uses a GRU (RNN) cell:

hr+1i = GRU(hri ,
∑
j∈N (i)

arijm
r
ij)

Here, mr
ij’s are a transformation of (h

r
i ,h

r
j), while a

r
ij’s are

attention weights.

43 51

GNN Output

After R message-passing rounds, p(Lπbt |L
π
b<t

) is modelled as a
mixture model:

p(Lπbt |L
π
b<t

) =
K∑
k=1

αk
∏
i∈bt

∏
1≤j≤i

θkij

Here, θrkij’s are another transformation of (h
r
i ,h

r
j), while αk’s are

mixture probabilities.

44 51

Effect of B

A higher value of B improves generation speed, while a lower
value of B improves accuracy.

Thus, the authors propose “strided sampling” to balance these.

45 51

Strided Sampling

After generating B rows, they only keep the first S rows. The next
block is generated from the (S+ 1)-th row.

However, during training, they fix S = 1.

46 51

GRAN Results

Figure: GRAN for Protein Graphs

47 51

GraphRNN vs GRAN

GraphRNN GRAN

Architecture Hierarchical RNNs GNN with attention and
RNN updates

Edge Updates Single-row updates Strided sampling
Graph Size Variable Fixed maximum size
Ordering BFS-based Mixture of orderings

48 51

Summary

Summary

▶ Major challenges — discreteness, variability, & ordering
▶ Working with the adjacency matrix — tackles discreteness
▶ Two popular approaches — single-shot & autoregressive

49 51

Approach Comparison

Single-Shot Autoregressive

Variability PAM Quantization Sequential generation
Ordering Varies Canonical Orderings
Graph Size Fixed maximum size Usually variable
Speed High Low

50 51

Model Comparison

51 / 51

Thank You!

References I

[1] Nicola De Cao and Thomas Kipf.
Molgan: An implicit generative model for small molecular
graphs, 2018.

[2] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial networks, 2014.

[3] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability, and
variation, 2018.

[4] Diederik P Kingma and Max Welling.
Auto-encoding variational bayes, 2014.

[5] Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, Charlie Nash,
William L. Hamilton, David Duvenaud, Raquel Urtasun, and
Richard S. Zemel.
Efficient graph generation with graph recurrent attention
networks, 2020.

References II

[6] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and
Ilya Sutskever.
Language models are unsupervised multitask learners.
2019.

[7] Benjamin Sanchez-Lengeling and Alán Aspuru-Guzik.
Inverse molecular design using machine learning: Generative
models for matter engineering.
Science, 361(6400):360–365, 2018.

[8] Martin Simonovsky and Nikos Komodakis.
Graphvae: Towards generation of small graphs using variational
autoencoders, 2018.

[9] Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure
Leskovec.
Graphrnn: Generating realistic graphs with deep
auto-regressive models, 2018.

	Single-Shot Models
	GraphVAE
	MolGAN

	Autoregressive Models
	GraphRNN
	GRAN

	Summary
	Appendix

