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§ Representation learning of graphs

§ What can they represent? What kind of problems they 
solve? 

§ Better strategies than intuition and heuristics for designing 
GNNs?  

GNN Theoretical Limitations
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Message Passing Networks (MPNN)
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Consider       to be the feature vector of node    at the    -th
iteration/layer:

Review on Message Passing Networks
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Weisfeiler-Lehman test of isomorphism

Asks whether two graphs are topologically identical

Image from Kriege et al. 5



Represent the set of feature vectors of a given node’s 
neighbors as a multiset 

A maximally powerful GNN would never map two different 
neighborhoods, i.e., multisets of feature vectors, to the 
same representation. 

§ Injective aggregation scheme
§ Isomorphic graphs have to be mapped to the same 

representation

WL test and expressivity of MPNNs
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When every function in between is injective, the output 
function is injective as well 

§ How can we build such model?

Injective MPNN
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Tools for making GIN

Xu, Keyulu, et al. "How powerful are graph neural 
networks?." arXiv preprint arXiv:1810.00826 (2018). 8

Consider a multiset    , and    to be any number

Assume a function            , where                , which maps 
each pair of inputs to a unique number

There exists an    , such that for some function    ,    can be 
decomposed as follows:     



§ Model the                      with one MLP

§ can be a learnable parameter or a scalar

§ READOUT:
§ More iterations gives better representational power
§ But less generalization
§ So GIN concatenates the embedding (information) from all layers 

GIN

Xu, Keyulu, et al. "How powerful are graph neural 
networks?." arXiv preprint arXiv:1810.00826 (2018). 9



§ 1-layer perceptron instead of MLP

§ Linear mapping can map two multisets to the same 
representations

§ Unlike models using MLPs, the 1-layer perceptron (even 
with the bias term) is not a universal approximator of 
multiset functions. 

What makes GIN powerful?
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Use an MLP with more than 1 layer



What makes GIN powerful?
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§ The mean captures the distribution (proportions) of 
elements in a multiset, but not the exact multiset

§ Max can capture the skeleton



§ Instead of sum in                              , what if we use mean 
or max?

What makes GIN powerful?
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GIN-results
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§ GNNs are at most as powerful as the WL test in 
distinguishing graph structures 

§ Conditions on aggregation and the readout function to be as 
powerful as WL test

§ Can we have the universal approximation theorem for 
GNNs? 

§ Can we compare different GNNs from their architecture?

WL test and expressivity of GNNs
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§ Training a graph classifier = finding the properties shared in 
one class
§ then deciding whether new graphs abide to said learned properties 

§ If the problem cannot be learned by a GNN of a certain 
depth
§ No matter what learning algorithm you use
§ The problem is not solvable!

Graph Classification in Theory

Find the lower bounds!
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Distributed Computing
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§ computation starts simultaneously and unfolds in 
synchronous rounds 

§ 3 possibilities in each round
§ each node receives a string of unbounded size from its incoming 

neighbors 
§ each node updates its internal state by performing some local 

computation
§ Each node sends a string to every one of its outgoing neighbors  

LOCAL
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§ : length of the longest shortest path between any two 
nodes

§ Depth d: number of layers in the network

§ Width: largest dimensions of node’s state over all layers and 
all nodes 

Turing Completeness

Loukas, Andreas. "What graph neural networks cannot learn: 
depth vs width." arXiv preprint arXiv:1907.03199 (2019). 18



MPNN is Turing universal over connected attributed graphs if:
§ each node is uniquely identified

§ AGGREGATE and COMBINE are Turing complete for each 
layer

§ the width is unbounded and 

Turing Universality
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Loukas, Andreas. "What graph neural networks cannot learn: 

depth vs width." arXiv preprint arXiv:1907.03199 (2019).



§ Assume we constraint the number bits in the communication
to be at most

§ If a problem P cannot be solved by CONGEST, it cannot be 
solved by a MPNN of depth    , and 

CONGEST
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Loukas, Andreas. "What graph neural networks cannot learn: 

depth vs width." arXiv preprint arXiv:1907.03199 (2019).



§ Finding a K-cycle in a graph 
§ undirected graph of k nodes each having exactly two neighbors 

§ There exists a MPNN of width    and                                 for 
even           , and                              for odd            which can 
detect if the input graph contains a K-cycle

K-cycle lower bound
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Loukas, Andreas. "What graph neural networks cannot learn: 

depth vs width." arXiv preprint arXiv:1907.03199 (2019).



§ Similar bounds for:
§ Subgraph detection 
§ Subgraph verification 
§ Computation problems

§ All related to classification!

§ Depth and width should exhibit a linear dependence on n, 
the number of nodes of the input
§ Counter intuitive! 
§ Locality 

Similar to K-Cycle

Capacity can be approximated by dw
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Capacity in 4-Cycle Classification

dw should pass the critical threshold
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Loukas, Andreas. "What graph neural networks cannot learn: 

depth vs width." arXiv preprint arXiv:1907.03199 (2019).



§ Enough layers of sufficient expressiveness and width

§ Nodes can uniquely distinguish each other

§ Turing universality 
§ > universal approximation theorem

§ Can do the graph isomorphism task (better than 1-WL)

Universal GNN
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§ How hard is to distinguish graphs with graph neural 
networks? 

§ How much information the nodes of a network can 
exchange during the forward pass?
§ Communication capacity
§ Generalization of the previous capacity notion

Distinguishing Graphs
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Communication Capacity

the maximal amount of information that 
can be sent across two subgraphs 
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Communication Complexity

the minimal amount of information needed 
so that two parties jointly compute a function 
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Determining Isomorphism Class
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§ Consider     to be the communication capacity of the graph

§ For a graph, if                   , and for a tree if                 , 
isomorphism classes can be learned by the MPNN

§ Can be extended to the graphs which are sampled from a 
distribution by using the expected communication capacity
§ Same bounds

A. Loukas, “How hard is to distinguish graphs 
with graph neural networks?”, NIPS 2020



Determining Isomorphism Class

A. Loukas, “How hard is to distinguish graphs 
with graph neural networks?”, NIPS 2020 29



WL is not the most powerful!
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§ Bounded degree
§ Which makes sense in most of the cases

§ Using an ID for every node
§ One-hot encoding

§ No external information other than the graph itself

Assumptions
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Minimum Dominating Set
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Minimum Vertex Cover
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Maximum Matching
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Port Numbering
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§ Use port numbering in AGGREGATE

§ Linear time (any port numbering)

§ Effectively share more information with the neighbors

§ CPNGNN

Vector Vector Consistent GNN

36Sato, Ryoma, Makoto Yamada, and Hisashi Kashima. "Approximation ratios of graph 
neural networks for combinatorial problems." arXiv preprint arXiv:1905.10261 (2019).



CPNGNN Algorithm

37Sato, Ryoma, Makoto Yamada, and Hisashi Kashima. "Approximation ratios of graph 
neural networks for combinatorial problems." arXiv preprint arXiv:1905.10261 (2019).



§ In terms of the class of problems that they can solve:

§ Example of problems that MB-GNNs cannot solve. Finding 
a single leaf:

Hierarchy of GNNs

Sato, Ryoma, Makoto Yamada, and Hisashi Kashima. "Approximation ratios of graph 
neural networks for combinatorial problems." arXiv preprint arXiv:1905.10261 (2019). 38



Without 
coloring

Weak 2-coloring and 
degree of nodes

2-coloring
(only bipartite)

Minimum 
Dominating 

Set
Minimum 

Vertex 
Cover

Maximum 
Matching

Approximation Ratio

39Sato, Ryoma, Makoto Yamada, and Hisashi Kashima. "Approximation ratios of graph 
neural networks for combinatorial problems." arXiv preprint arXiv:1905.10261 (2019).

Not possible!



§ GNNs are universal when nodes are given unique features 
(random coloring, one-hot encoding) and the depth and 
width satisfy some conditions

§ The equivalence of anonymous MPNN to the 1st-order 
Weisfeiler-Lehman (1-WL) graph isomorphism test 

§ GIN vs VVc-GNN

§ Combinatorial (approximation) algorithms

Summary
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