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Motivation: The deeper, the better.

Top-5 error of the winners of the ImageNet Challenge. Image source http://paddlepaddle.org/.



● One layer GNN = Neighborhood Aggregation + Node-wise Neural Network

Reminder: Graph Neural Network (GNN)
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What is "Over-smoothing"?

● As the model gets deeper, node features become similar everywhere.

Neighborhood Aggregation 
& element-wise NN

One layer of GNN

Multiple layers of GNN



Agenda

● Understanding Over-smoothing
○ Experimental Evidence
○ Theoretical Analysis

● Solutions to Over-smoothing
○ Residual Connection
○ Graph Sparsification
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Experimental Evidence (Chen et al [1])

The node classification accuracy (Acc) of GCNs on the CORA dataset.



● A measure of similarity of node features. 

○ MAD: Mean Average Distance
○     : the vertex set of the graph           .
○       : the node feature of the node     .

The MAD (mean average distance) values of various GNNs 
with different layers on the CORA dataset

Similarity of Node Features
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Understanding Over-smoothing: 
Theoretical Analysis (Oono and Suzuki [2])

w. r. t. #Layers



● Node feature matrix

                               

where                           are node 
feature vectors and       = (#nodes).

● Augmented adjacency/degree matrix
                  ,                    .

Notations and Model Assumptions

● GCN

                            

where 

     is Relu activation,
      is a weight matrix,
                                          is the graph 
convolution matrix.

convolved node features



Exponential Convergence of Node Features

● Theorem
○ Assume for simplicity that G = (V, E) is connected graph and the node degrees are same for all nodes.
○ Let                       be the linear subspace where all row vectors are equivalent.

i. e.                                                                   .          e. g.                                         .

○ Let               be the sequence of node features defined by                                                     . 
○ Then, 

for some constant                   (under some conditions). 



Intuition of Exponential Decay

●  

Neighborhood Aggregation 
& element-wise NN Multiple layers of GNN



Analogy to Power Iteration

● Ignore the σ( ･ ) and W from                              , and assume C=1
                   
⇒ Power iteration to find the largest eigenvector of     ,

         approaches to the eigenspace of largest eigenvalue of     .
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Solution to Over-smoothing:
Residual Connection (Chen et al [3])



● GCN

 
● GCNII = GCN  +  Initial residual connection  +  Identity mapping

where                         is the graph convolution matrix and      is weight matrix.
     's and      's are hyperparameters.

initial residual connection      identity mapping  

Solution to Over-smoothing:
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Solution to Over-smoothing:
Residual Connection (Chen et al [3])

GCNII* uses different weight matrix for  initial residual connection as 



● Initial residual connection lets you go deeper.
● Identity mapping improves performance.

Solution to Over-smoothing:
Residual Connection (Chen et al [3])

initial residual connection      identity mapping  
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Solution to Over-smoothing:
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drop edges in a smarter way



Solution to Over-smoothing:
Graph Sparsification (Hasanzadeh et al [5])

● DropEdge (layer wise)

● Graph Drop Connect (layer & channel wise)



Solution to Over-smoothing:
Graph Sparsification (Hasanzadeh et al [5])

● Hierarchical prior for drop rate

● Learn the drop rate       of edges as posterior inference

⇔ DropEdge as Bayesian approximation of 



Solution to Over-smoothing:
Graph Sparsification (Hasanzadeh et al [5])

● GCN-DO: Dropout
● GCN-DE: DropEdge
● GCN-BBDE: Beta-Bernoulli DropEdge (layer-wise dropping)
● GCN-BBGDC: Beta-Bernoulli Graph Drop Connection (layer & channel-size dropping)



Solution to Over-smoothing:
Graph Sparsification (Zheng et al [6])

drop edges in a smarter way using NNs



Solution to Over-smoothing:
Graph Sparsification (Zheng et al [6])

Input graph

Node features
obtained by GCN



● Consider a weighted objective 

      

○                is the latent variable
○        is k-neighbor subgraphs of     .
○                is GNN model.
○                is realized by sampling from edge weight model                                                       .  

Solution to Over-smoothing:
Graph Sparsification (Zheng et al [6])

original 
objective

weight



Solution to Over-smoothing:
Graph Sparsification (Zheng et al [6])



Summary

● Understanding Over-smoothing
○ Experimental Evidence
○ Theoretical Analysis

● Solutions to Over-smoothing
○ Residual Connection
○ Graph Sparsification
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