GNN:
Over-smoothing

Kei Ishikawa



Motivation: The deeper, the better.
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Top-5 error of the winners of the ImageNet Challenge. Image source http://jpaddlepaddle.org/



Reminder: Graph Neural Network (GNN)

e One layer GNN = Neighborhood Aggregation + Node-wise Neural Network

Neighborhood Aggregation ~ Neural Network f{(-)
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What is "Over-smoothing”?

As the model gets deeper, node features become similar everywhere.
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Agenda

e Understanding Over-smoothing
o Experimental Evidence
o  Theoretical Analysis
e Solutions to Over-smoothing
o  Residual Connection
o Graph Sparsification
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Experimental Evidence (chen et al [1])
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The node classification accuracy (Acc) of GCNs on the CORA dataset.



Similarity of Node Features
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e A measure of similarity of node features. i -- R 0%
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o  MAD: Mean Average Distance

V: the vertex set of the graph (V, E).
o Xy:the node feature of the node v . CrEphSAGE 0.632 0.053
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The MAD (mean average distance) values of various GNNs
with different layers on the CORA dataset
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e Understanding Over-smoothing

o  Theoretical Analysis



Understanding Over-smoothing:
Theoretical Analysis (0ono and suzuki [2])

Published as a conference paper at ICLR 2020
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Node feature matrix

where zq,...,zy € R® are node
feature vectors and NN = (#nodes).
Augmented adjacency/degree matrix
A=A+I, D=D+I.

Notations and Model Assumptions

GCN f : RJ\’YXC - RzVXC

f=fro-0of1
filX) = o(PXV))

convolved node features

where

o is Relu activation,

W, is a \{veighlc matrix,
P=D"24AD" 3 ¢ RV*V is the graph
convolution matrix.



Exponential Convergence of Node Features

e Theorem
o Assume for simplicity that G = (V, E) is connected graph and the node degrees are same for all nodes.
o Let M CRYXC pe the linear subspace where all row vectors are equivalent.
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Let {X;},en be the sequence of node features defined by X, = f,(X;_) (:: o(PX,_1W;) )
Then,

diSt(Xg, ./\/l) = Ylg}i/l HXZ — YHFrob < Cl

for some constant 0 < C' < 1 (under some conditions).



Intuition of Exponential Decay

o dist(X;, M) =

inf || X7 = Y||gop < C"
YeM

Neighborhood Aggregation
& element-wise NN
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Analogy to Power Iteration

e Ignorethea(-)and W from fi(X) = o(PXW)), and assume C=1

= Power iteration to find the largest eigenvector of P,

Xp=PX;

X approaches to the eigenspace of largest eigenvalue of ]i
N
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Agenda

e Solutions to Over-smoothing
o Residual Connection



Solution to Over-smoothing:
Residual Connection (chen et al [3))

33vl [cs.LG] 4 Jul 2020

Simple and Deep Graph Convolutional Networks

Ming Chen' Zhewei Wei** Zengfeng Huang® Bolin Ding® Yaliang Li®

Abstract

Graph convolutional networks (GCNs) are a pow-
erful deep learning approach for graph-structured
data. Recently, GCNs and subsequent variants
have shown superior performance in various ap-
plication areas on real-world datasets. Despite
their success, most of the current GCN models
are shallow, due to the over-smoothing problem.
In this paper, we study the problem of design-
ing and analyzing deep graph convolutional net-
works. We propose the GCNII, an extension of
the vanilla GCN model with two simple yet effec-
tive techniques: Initial residual and Identity map-
ping. We provide theoretical and empirical evi-
dence that the two techniques effectively relieves
the problem of over-smoothing. Our experiments
show that the deep GCNII model outperforms the
state-of-the-art methods on various semi- and full-
supervised tasks. Code is available at https:
//github.com/chennnM/GCNII.

puter vision (Zhao et al., 2019; Ma et al., 2019).

Despite their enormous success, most of the current GCN
models are shallow. Most of the recent models, such as
GCN (Kipf & Welling, 2017) and GAT (Veli¢kovi¢ et al.,
2018), achieve their best performance with 2-layer models.
Such shallow architectures limit their ability to extract in-
formation from high-order neighbors. However, stacking
more layers and adding non-linearity tends to degrade the
performance of these models. Such a phenomenon is called
over-smoothing (Li et al., 2018b), which suggests that as
the number of layers increases, the representations of the
nodes in GCN are inclined to converge to a certain value
and thus become indistinguishable. ResNet (He et al., 2016)
solves a similar problem in computer vision with residual
connections, which is effective for training very deep neural
networks. Unfortunately, adding residual connections in
the GCN models merely slows down the over-smoothing
problem (Kipf & Welling, 2017); deep GCN models are still
outperformed by 2-layer models such as GCN or GAT.

Recently, several works try to tackle the problem of over-



Solution to Over-smoothing:
Residual Connection (chen et al [3))

e GCN
HAD — & (pr)w(e))

e GOCNIl = GCN + Initial residual connection + |dentity mapping
H(D :o'<((1—ozg)15H(e)+a4H(O)) ((1— ﬁg)In-l—BgW(Z)»
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Y Y
initial residual connection  identity mapping

where p = D-3AD-% is the graph convolution matrix and W is weight matrix.
ay's and 56'5 are hyperparameters.



Solution to Over-smoothing:
Residual Connection (chen et al [3))

Table 5. Mean classification accuracy of full-supervised node classification.

Method Cora Cite. Pumb. Cham. Corn. Texa. Wisc.
GCN 85.77 73.68 88.13 28.18 52.70 52.16 45.88
GAT 86.37 74.32 87.62 4293 54.32 58.38 4941
Geom-GCN-I  85.19 77.99 90.05 60.31 56.76 57.58 58.24
Geom-GCN-P 84.93 75.14 88.09 60.90 60.81 67.57 64.12
Geom-GCN-S 85.27 74.71 84.75 59.96 55.68 59.73 56.67
APPNP 87.87 76.53 89.40 54.3 73.51 65.41 69.02
JKNet 85.25(16) 75.85(8) 88.94 (64) 60.07 (32) 57.30(4) 56.49 (32) 48.82(8)
JKNet(Drop) 87.46 (16) 75.96 (8) 89.45(64) 62.08(32) 61.08 (4) 57.30 (32) 50.59 (8)
Incep(Drop) 86.86 (8) 76.83 (8) 89.18 (4) 61.71 (8) 61.62 (16) 57.84 (8) 50.20 (8)
GCNII 88.49 (64) 77.08 (64) 89.57 (64) 60.61 (8) 74.86 (16) 69.46 (32) 74.12 (16)
GCNITI* 88.01 (64) 77.13(64) 90.30 (64) 62.48 (8) 76.49 (16) 77.84 (32) 81.57 (16)

GCNII* uses different weight matrix for initial residual connection as

HO) = o (1 - a PHO (1= )L, + W) +aHO (1= oL, + W)



Solution to Over-smoothing:
Residual Connection (chen et al [3))

H(D =a(<(1—ag)f’H(£)+agH(0)> ((1— ﬁg)InJrﬂgW(f)))
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initial residual connection  identity mapping

e Initial residual connection lets you go deeper.
e Identity mapping improves performance.
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e Solutions to Over-smoothing

o Graph Sparsification



Solution to Over-smoothing:
Graph Sparsification

@ Promising Organizations
@ Other Organizations
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(a) Original Subgraph (b) Sparsified Subgraph



Solution to Over-smoothing:
Graph Sparsification (rong et al [4])

Published as a conference paper at ICLR 2020

DROPEDGE: TOWARDS DEEP GRAPH CONVOLU-
TIONAL NETWORKS ON NODE CLASSIFICATION

Yu Rong', Wenbing Huang?; Tingyang Xu', Junzhou Huang'

! Tencent AI Lab

2 Beijing National Research Center for Information Science and Technology (BNRist),
State Key Lab on Intelligent Technology and Systems,

Department of Computer Science and Technology, Tsinghua University
yu.rong@hotmail.com, hwenbing@1l26.com
tingyangxu@tencent.com, jzhuang@uta.edu

ABSTRACT

Over-fitting and over-smoothing are two main obstacles of developing deep Graph
Convolutional Networks (GCNs) for node classification. In particular, over-fitting
weakens the generalization ability on small dataset, while over-smoothing impedes
model training by isolating output representations from the input features with the
increase in network depth. This paper proposes DropEdge, a novel and flexible
technique to alleviate both issues. At its core, DropEdge randomly removes a
certain number of edges from the input graph at each training epoch, acting like a
data augmenter and also a message passing reducer. Furthermore, we theoretically
demonstrate that DropEdge either reduces the convergence speed of over-smoothing
or relieves the information loss caused by it. More importantly, our DropEdge
is a general skill that can be equipped with many other backbone models (e.g.
GCN, ResGCN, GraphSAGE, and JKNet) for enhanced performance. Extensive

.................... O A I i O O UL C B ST TR



Solution to Over-smoothing:
Graph Sparsification (rong et al [4])

Table 1: Testing accuracy (%) comparisons on different backbones w and w/o DropEdge.

2 layers 8 layers 32 layers
Dataset Backbone Orignal DropEdge | Orignal DropEdge | Orignal DropEdge
GCN 86.10 86.50 78.70 85.80 71.60 74.60
ResGCN - - 85.40 86.90 85.10 86.80
Cora JKNet - - 86.70 87.80 87.10 87.60
IncepGCN - - 86.70 88.20 87.40 87.70
GraphSAGE 87.80 88.10 84.30 87.10 31.90 32.20
GCN 75.90 78.70 74.60 77.20 59.20 61.40
ResGCN - - 77.80 78.80 74.40 77.90
Citeseer JKNet - - 79.20 80.20 71.70 80.00
IncepGCN - - 79.60 80.50 72.60 80.30
GraphSAGE 78.40 80.00 74.10 77.10 37.00 53.60
GCN 90.20 91.20 90.10 90.90 84.60 86.20
ResGCN - - 89.60 90.50 90.20 91.10
Pubmed JKNet - - 90.60 91.20 89.20 91.30
IncepGCN - - 90.20 91.50 OOM 90.50
GraphSAGE 90.10 90.70 90.20 91.70 41.30 47.90
GCN 96.11 96.13 96.17 96.48 45.55 50.51
ResGCN - - 96.37 96.46 93.93 94.27
Reddit  JKNet B - 96.82 97.02 OOM OOM
IncepGCN - - 96.43 96.87 OOM OOM
GraphSAGE 96.22 96.28 96.38 96.42 96.43 96.47




Solution to Over-smoothing:
Graph Sparsification (Hasanzadeh et al [5])

30 Jun 2020

drop edges in a smarter way
~

Bayesian Graph Neural Networks with Adaptive Connection Sampling

Arman Hasanzadeh ™' Ehsan Hajiramezanali*' Shahin Boluki' Mingyuan Zhou? Nick Duffield !
Krishna Narayanan! Xiaoning Qian'

Abstract

We propose a unified framework for adap-
tive connection sampling in graph neural net-
works (GNN5s) that generalizes existing stochas-
tic regularization methods for training GNNs.
The proposed framework not only alleviates over-
smoothing and over-fitting tendencies of deep
GNNs, but also enables learning with uncertainty
in graph analytic tasks with GNNs. Instead of

noina fivad camnlina ratac ar hand funina tham

two major limitations: 1) they cannot go very deep due to
over-smoothing and over-fitting phenomena (Li et al., 2018;
Kipf & Welling, 2017); 2) the current implementations of
GNNs do not provide uncertainty quantification (UQ) of
output predictions.

There exist a variety of methods to address these problems.
For example, DropOut (Srivastava et al., 2014) is a popular
regularisation technique with deep neural networks (DNNs)

to avoid over-fitting, where network units are randomly
mranbad ducias teaninins Ta NN NeaaMNuat 16 wanliscad ke,



Solution to Over-smoothing:
Graph Sparsification (Hasanzadeh et al [5])

e DropEdge (layer wise)
H+D — 4 (m( A6zZOYHO W(l))

e Graph Drop Connect (layer & channel wise)

fi
HODL ) = 0 (Z (A © 2 HOR, i WO [m]) ,
i—1
for j=1,...,fi1 4)



Solution to Over-smoothing:
Graph Sparsification (Hasanzadeh et al [5])

e Hierarchical prior for drop rate

2 R Bernoulli(7r;)
0y X Beta (%7 C<LL_ 1>)

e Learn the drop rate 71 of edges as posterior inference

< DropEdge as Bayesian approximation of Wj(’? iLd. N(0,7)



Solution to Over-smoothing:
Graph Sparsification (Hasanzadeh et al [5])

Table 1. Semi-supervised node classification accuracy of GCNs with our adaptive connection sampling and baseline methods.

Method Cora Citeseer Cora-ML

2 layers 4 layers 2 layers 4 layers 2 layers 4 layers
GCN-DO 80.98 £+ 0.48 78.24 +2.4 70.44+£0.39 64.38+0.90 83.45+0.73 81.51+1.01
GCN-DE 78.36 £0.92 73.40+£2.07 70.52+0.75 57.14+0.90 83.30+1.37 68.89 4+ 3.37
GCN-DO-DE 80.58 £1.19 79.20£+1.07 70.74+£1.23 64.84+0.98 83.61+0.83 81.21 +1.53
GCN-BBDE 81.58 +0.49 80.42+0.25 71.46+0.55 68.58+0.88 84.62+1.70 84.73 +0.52
GCN-BBGDC | 81.80+0.99 82.20+0.92 71.724+0.48 70.00+0.36 85.43+0.70 85.52+0.83
[ GCN-DO: Dropout
o GCN-DE: DropEdge
[ GCN-BBDE: Beta-Bernoulli DropEdge (layer-wise dropping)
[ GCN-BBGDC: Beta-Bernoulli Graph Drop Connection (layer & channel-size dropping)



Solution to Over-smoothing:
Graph Sparsification (zheng et al [6])

drop edges in a smarter way using NNs

pd
»

Robust Graph Representation Learning via Neural Sparsification

Cheng Zheng' Bo Zong? Wei Cheng? Dongjin Song? Jingchao Ni> Wenchao Yu? Haifeng Chen?
Wei Wang !

Abstract

Graph representation learning serves as the core
of important prediction tasks, ranging from prod-
uct recommendation to fraud detection. Real-
life graphs usually have complex information
in the local neighborhood, where each node is
described by a rich set of features and con-
nects to dozens or even hundreds of neighbors.
Despite the success of neighborhood aggrega-
tion in graph neural networks, task-irrelevant in-
formation is mixed into nodes’ neighborhood,
making learned models suffer from sub-optimal

oeneralizatinn nerfarmance  In thic naner we

tion in citation networks (Zhang et al., 2018), spam detec-
tion in social networks (Akoglu et al., 2015), recommen-
dations in online marketing (Ying et al., 2018), and many
others (Yu et al., 2018; Li et al., 2018). As a class of mod-
els that can simultaneously utilize non-structural (e.g., node
and edge features) and structural information in graphs,
Graph Neural Networks (GNNs) construct effective rep-
resentations for downstream tasks by iteratively aggregat-
ing neighborhood information (Li et al., 2016; Hamilton
et al., 2017; Kipf & Welling, 2017). Such methods have
demonstrated state-of-the-art performance in classification
and prediction tasks on graph data (Velickovi¢ et al., 2018;
Chen et al., 2018; Xu et al., 2019; Ying et al., 2019).



Solution to Over-smoothing:
Graph Sparsification (zheng et al [6])

Input graph <

Node features <
obtained by GCN
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(a) Node Features (b) With Task-irrelevant Edges (c) By DropEdge (d) By NeuralSparse



Solution to Over-smoothing:
Graph Sparsification (zheng et al [6])

e Consider a weighted objective

P(Y|G) = > Qu(Y]9)Qu(9|G) = Egeggic) [Qo(Yg)]

€S
geRe original weight

objective
g c SG is the latent variable

S¢ is k-neighbor subgraphs of G.
Qs(Y'lg) is GNN model.
Q4(9|G) is realized by sampling from edge weight model 2y, = MLP4(V (u),V (v), A(u,v)).
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Sparsified Graph Classification Results
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Solution to Over-smoothing:

Graph Sparsification (zheng et al [6])

Table 2. Node classification performance

SparsE Method Reddit PPI Transaction Cora Citeseer
Micro-F1 Micro-F1 AUC Accuracy Accuracy
GCN 0.922 +0.041 0.532+0.024 0.564 +0.018 0.810+0.027 0.694 + 0.020
N/A GraphSAGE 0938 +0.029 0.600 +0.027 0.574 £0.029 0.825 +0.033 0.710 £+ 0.020
GAT - 0973 £0.030 0.616 £0.022 0.821 £0.043 0.721 £+ 0.037
GIN 0.928 +£0.022 0.703 +£0.028 0.607 +£0.031 0.816 £0.020 0.709 £ 0.037
GCN 0.961 +0.040 0.548 +£0.041 0.591 +0.040 0.828 +0.035 0.723 + 0.043
DR GraphSAGE 0963 +0.043 0.632 £ 0.031 0.598 +£0.043 0.821 £0.048 0.712 £ 0.032
GAT - 0.851 =0.030 0.604 +0.043 0.789 +0.039 0.691 4+ 0.039
GIN 0.931 £0.031 0.783 £0.037 0.625 +0.035 0.818 +£0.044 0.715 + 0.039
GCN 0.966 +0.020 0.651 £0.014 0.610 £0.022 0.837 +£0.014 0.741 £ 0.014
Neural GraphSAGE  0.967 = 0.015 0.696 £ 0.023 0.649 = 0.018 0.841 +£0.024 0.736 £ 0.013
Sparse GAT - 0.986 = 0.015 0.671 £ 0.018 0.842 +0.015 0.736 + 0.026
GIN 0.959 £ 0.027 0.892 +0.015 0.634 +£0.023 0.838 £0.027 0.738 £0.015




Summary

e Understanding Over-smoothing
o Experimental Evidence
o  Theoretical Analysis
e Solutions to Over-smoothing
o  Residual Connection
o Graph Sparsification
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