RL: Introduction to Hierarchical Reinforcement

Learning
Andrea Mattei

You are surfing the web, when you stumble on this website

COMPETITION MINERL

I{ lv
:
. .
£y
> 0

-

MifieRL: Towards Al in Minecraft

-
] o
—

MineRL

Finds diamonds @ as fast as possible

& KB CGEETSY

Sample-efficient

reinforcement learning
in Minecraft
gm_ mam LT e =t

NeurlPS

-
]
]

nnnnnn
y =R
lllll

First Try

States, Rewards Actions

Environment

—

First Failure

In Minecraft tools have many iterations

$

We need generalization and transfer learning

[— = 4@
2] P T A) R N ol oML 3 {iele] s 2
SR 8.2 (g@= [7 e % LGk 8
~ 5 Sis s8 LI B ‘.;9‘0‘ ‘ﬁ ® Igﬁ“‘
N N EHE e et =) [= “'
=Ty > Ve EHeHe = @ “‘ = ‘._“. & B
[y TN — o cna P s BIZAANI AT o o | [@OgEl R
- i ® Ao o= v 1 = TRt | o ¥ ¥
o Bloelrim s = @2l [©) @ 7 B T (o gﬁ?‘:
'] [-) '
o enee, m el U PP o N | EHE 5 s
® ol B (2l Bhgn\)k el H doho /
® . HwL] S 7@ f‘ I 2 o= .0 ® gﬂ T
A4 @ un'n"’v AT E o gy | L0 [i 9)= 1“3',. ® @ - .‘ ¥ r 7
= Ay T R , = (Chag=e= S E L L e #
B 1 o2 e~ oiaW (gld /gy, e
o g ‘= @ L = = o S e O &
@ @. = & ®] ® LS .

First Failure

States are big and complex!

4

We need to deal with big states efficiently

First Failure

Limited training samples!

4

We need sample efficiency
The environment gives sparse rewards!

4

We need to deal with sparse rewards

—

What we need

* We need generalization and transfer learning
* We need to deal with big states efficiently
 We need sample efficiency
 We need to deal with sparse rewards

What we need

* We need generalization and transfer learning
* We need to deal with big states efficiently
 We need sample efficiency
 We need to deal with sparse rewards

Hierarchical Reinforcement Learning (HRL) can
help us!

Hierarchical Reinforcement Learning (HRL)

In Hierarchical Reinforcement Learning the agent divides the task into sub-tasks

Collect Diamonds

Build Pickaxe

A 4

A 4

Find Wood/lron

_

How HRL Help Us

* We need generalization and transfer learning
HRL: sub-tasks can be reused

* We need to deal with big states efficiently
HRL: sub-tasks can operate on a subset of the state space

* We need sample efficiency
HRL: sub-tasks are uniquely trained

* We need to deal with sparse rewards
HRL: sub-tasks can model sparse reward goals

Let’s Pick Our Tools

Markov Decision Process (MDP)

A Markov Decision Process is defined as a tuple < S, 4, P, R,y > where:

* Sisasetof states

* Aisasetof actions

* Pg. is a state transiction function defined as P;.s = P[S;q = s'|S; = 5,4 = a]
* RZisareward function defined as RS = E[R;1|S; = s,A; = a]

* yisadiscount factory € [0,1]

Semi-Markov Decision Process (SMDP)

SMDPs allow modelling of continous-time discrete-event systems.

Time ——

MDP ./\/\// IState
SMDP /\/\[

—

Options

An option w is defined by 3 parameters< I, T, B, >:
* I, istheinitiation setwith I, S S

* 1w, isa policy

* B, is the termination conditions f8,: S = [0,1]

Options -,
over MDP A

The 2 Main Approaches of HRL

Feudal RL Option-critic

Feudal Reinforcement Learning

Feudal RL

Feudal Reinforcement Learning

The main idea is to have an hierarchy of managers. Like in Feudalism, managers have absolute power over their
sub-managers

Feudal Reinforcement Learning

Peter Dayan Geoffrey E Hinton
CNL Department of Computer Science
The Salk Institute University of Toronto
PO Box 85800 6 Kings College Road, Toronto,
San Diego CA 92186-5800, USA Canada M5S 1A4
dayan@helmholtz.sdsc.edu hintonQai.toronto.edu

_

Feudal Reinforcement Learning

The main idea is to have an hierarchy of managers. Like in Feudalism, managers have absolute power over their
sub-managers

Reward Hiding

«Managers must reward sub-managers for doing their bidding whether or
not this satisfies the commands of the super-managers»

Information Hiding

«Managers only need to know the state of the system at the granularity of
their own choices of tasks»

From the idea to the implementation

In 2017 Vezhnevets et al. proposed a Deep Reinforcement Learning implementation (FUN) of Feudal Reinforcement

Learning

[cs.AI] 6 Mar 2017

FeUdal Networks for Hierarchical Reinforcement Learning

Alexander Sasha Vezhnevets
Simon Osindero

Tom Schaul

Nicolas Heess

Max Jaderberg

David Silver

Koray Kavukcuoglu

DeepMind

Abstract

We introduce FeUdal Networks (FuNs): a novel
architecture for hierarchical reinforcement learn-
ing. Our approach is inspired by the feudal rein-
forcement learning proposal of Dayan and Hin-
ton, and gains power and efficacy by decou-
pling end-to-end learning across multiple levels
— allowing it to utilise different resolutions of
time. Our framework employs a Manager mod-

VEZHNICK @ GOOGLE.COM
OSINDERO @GOOGLE.COM
SCHAUL@GOOGLE.COM
HEESS @GOOGLE.COM
JADERBERG @GOOGLE.COM
DAVIDSILVER @ GOOGLE.COM
KORAYK @GOOGLE.COM

mains a major challenge for these methods, especially in
environments with sparse reward signals, such as the in-
famous Montezuma’s Revenge ATARI game. It is symp-
tomatic that the standard approach on the ATARI bench-
mark suite (Bellemare et al., 2012) is to use an action-
repeat heuristic, where each action translates into several
(usually 4) consecutive actions in the environment. Yet an-
other dimension of complexity is seen in non-Markovian
environments that require memory — these are particularly

BIRGE P _ J
&

FuN architecture

Worker

Goals, Rewards

Manager

\ 4

Rewards States Actions

Environment

—

An in-depth look at the agent

Manager O goal .
s R4 4,[f Mrnn]_, =Rd T.‘ransmo.n
: 5 policy gradient
..No gradient .
[f Hopace } Worker
@
? r k=16 << d=256
X I A Rd kx|
t b Q wER action
Policy gradient
) 3
'{ f wrnn i—' UtE Rlalxk

Manager

The manager produces goals for the worker

Manager goal

d H[Qm, | . Transition
SER / g <R policy gradient

'3

No gradient

[f Mspace]

- zte Rd

\ towd f /

Worker

The worker acts on the environment according to its goal

Worker
@

! k=16 << d=256

o4
v

z,E Rd

action

@ .
_(Wm'n Ue R|ﬂ|Xk
_— —

Policy gradient

Worker’s Reward

* Unlike the original FRL formulation, reward hiding is not strictly enforced

* The overall reward is given as:

R =R, + aR]
* The intrisinc reward is calculatad starting from the goal as:

c
Ri = 1/Cz deos(St — St—1,9t-1)
1

—

Result on Montezuma’s Revenge

FuN obtained great result on Montezuma’s Revenge, a game infamous for its sparse rewards

00 MoONtezuma_revenge
—— LSTM, 0.99

2000
1500 start ’
1000 | . 19
500 10

0

0 200 400 600 800

Training epochs , I S
l L 11 un oy |1 1 1ll| .

Time step 180

Goal count

-

Option-Critic

Option-critic

Option-Critic

The Option-Critic architecture extends the Actor-Critic one by introducing options

.05140v2 [cs.Al] 3 Dec 2016

The Option-Critic Architecture

Pierre-Luc Bacon and Jean Harb and Doina Precup
Reasoning and Learning Lab, School of Computer Science
McGill University
{pbacon, jharb, dprecup}@cs.mcgill.ca

Abstract

Temporal abstraction is key to scaling up learning and plan-
ning in reinforcement learning. While planning with tempo-
rally extended actions is well understood, creating such ab-
stractions autonomously from data has remained challenging.
We tackle this problem in the framework of options [Sutton,
Precup & Singh, 1999; Precup, 2000]. We derive policy gra-
dient theorems for options and propose a new option-critic
architecture capable of learning both the internal policies and
the termination conditions of options, in tandem with the pol-
icy over options, and without the need to provide any addi-
tional rewards or subgoals. Experimental results in both dis-
crete and continuous environments showcase the flexibility
and efficiency of the framework.

Introduction

Temporal abstraction allows representing knowledge about
courses of action that take place at different time scales.
In reinforcement learning, options (Sutton, Precup, and
Singh 1999; Precup 2000) provide a framework for defin-
ing such courses of action and for seamlessly learning and
planning with them. Discovering temporal abstractions au-

learning process of the intra-option policies and termination
functions, simultaneously with the policy over them. This
approach works naturally with both linear and non-linear
function approximators, under discrete or continuous state
and action spaces. Existing methods for leaming options are
considerably slower when learning from a single task: much
of the benefit comes from re-using the learned options in
similar tasks. In contrast, we show that our approach is ca-
pable of successfully leaming options within a single task
without incurring any slowdown and while still providing
benefits for transfer learning.

We start by reviewing background related to the two main
ingredients of our work: policy gradient methods and op-
tions. We then describe the core ideas of our approach:
the intra-option policy and termination gradient theorems.
Additional technical details are included in the appendix.
‘We present experimental results showing that our approach
learns meaningful temporally extended behaviors in an ef-
fective manner. As opposed to other methods, we only need
to specify the number of desired options; it is not necessary
to have subgoals, extra rewards, demonstrations, multiple
problems or any other special accommodations (however,

A Recap on Actor-Critic

Gradient TD Error

\ 4

States Critic Actions

| Rewards

Environment

Option-Critic

States

Policy over

\ 4

options

Options

Gradients

\ 4

Critic

| Rewards

Environment

TD Error

a

Actions

Intra-Option Learning

For learning an option w, it is necessary to learn both the option policy 7, g and the termination function f8, .

Intra-Option Policy Gradient Theorem:

0Qq(w, s) _ K [@ﬂw,e(a |s)

30 5 QWS a)]

Termination Gradient Theorem:

oU(w,s) K [_
v

dﬁw,v(s)
ov

3 A_Q(W, S)]

Critic

The Critic model learns to approximate the state-option value function Qq (s, w).

With it the critic estimates:

* The action-option-state value function Qy(w, s, a)

* The advantage function over options Aq(w,s) = Qq (s, w) — Vq(s) with Vy(s) as the value function

Visualizing the Options

Time

L LT A

Option 0 Option 1

The image is the trajectory of the original implementation of the Option-Critic playing Seaquest with 2 options

FRL vs Option-Critic

In Feudal Reinforcement Learning, sub-tasks must be fixed by the programmer. On the contrary, in Option-Critic
sub-taks are learned automatically

Option-Critic requires less domain- Feudal Reinforcement Learning allows
specific knowledge more state abstraction

Challenges of Option-Critic

During training, options could collapse into:
* Asingle active option that completes the entire task

* Aset options that changes at every step

Another limitation of the architecture is the assumption that options can apply everywhere

Challenges of FuN

The main challenge of FuN is the fact that the goal depends on the state. In particular, it depends on the distance
function used to generate the rewards.

Superficially similar states can lead to wrong/ineffective goal generations!

Thank for your attention
| hope we will have a nice discussion!

To be continued in Edoardo’s presentation...

—

References

Presented Papers

* Feudal Reinforcement Learning (Dayan et al., 1993)

* FeUdal Networks for Hierarchical Reinforcement Learning (Vezhnevets et al., 2017)
* The Option-Critic Architecture (Precup et al., 2016)

Additional Resources

* Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning
(Sutton et al. 1999)

* https://thegradient.pub/the-promise-of-hierarchical-reinforcement-learning/

* https://towardsdatascience.com/hierarchical-reinforcement-learning-a2cca9b76097

MineRL

» Official website: https://minerl.io/
* Presentation paper: https://arxiv.org/pdf/2101.11071.pdf

https://proceedings.neurips.cc/paper/1992/file/d14220ee66aeec73c49038385428ec4c-Paper.pdf
https://arxiv.org/pdf/1703.01161.pdf
https://arxiv.org/pdf/1609.05140.pdf
https://people.cs.umass.edu/~barto/courses/cs687/Sutton-Precup-Singh-AIJ99.pdf
https://thegradient.pub/the-promise-of-hierarchical-reinforcement-learning/
https://towardsdatascience.com/hierarchical-reinforcement-learning-a2cca9b76097
https://minerl.io/
https://arxiv.org/pdf/2101.11071.pdf

