Seminar in Deep Neural Networks

Introduction

Natural Language Processing

Graph Neural Networks

Reinforcement Learning

Algorithmic Learning

Disclaimer: This is a seminar...

(almost) no basics
participation required

Format

- Assigned topics
- 2×35 min video presentation + Piazza
- 30 min facilitated discussion on zoom
- Feedback through Google Form

Grade $=$ presentation + active participation

What makes a good talk?

Explore

Connect
Build

Motivate

Neural architectures

Natural Language Processing... Evaluation?

Natural Language Processing

How powerful are these models already?

Reinforcement Learning...

Why you should NOT use reinforcement learning...

Why you should NOT use reinforcement learning...

How does RL work?

$$
\begin{aligned}
& R=\sum_{t_{e}^{\prime}=t}^{T_{e}} \gamma^{t^{\prime}-t} \boldsymbol{r}_{t^{\prime}} \\
& \quad \gamma \in(0,1]
\end{aligned}
$$

$$
\begin{aligned}
V^{\pi}\left(s_{t}\right) & =\mathbb{E}_{\pi}\left[\sum_{t^{\prime}=t}^{T_{e}} \gamma^{t^{\prime}-t} r_{t^{\prime}}\right] \\
& =\mathbb{E}_{\pi}\left[r_{t}\right]+\gamma \mathbb{E}_{\pi}\left[\sum_{t^{\prime}=t+1}^{T_{e}} \gamma^{t^{\prime}-t-1} r_{t^{\prime}}\right] \\
& =\mathbb{E}_{\pi}\left[r_{t}\right]+\gamma V^{\pi}\left(s_{t+1}\right) \\
& \text { must be equal }
\end{aligned}
$$

Q-Learning - Watkins (1989)

$$
\begin{aligned}
V^{\pi}\left(s_{t}\right) & =\mathbb{E}_{\pi}\left[r_{t}\right]+\gamma V^{\pi}\left(s_{t+1}\right) \\
Q^{\pi}\left(s_{t}, a_{t}\right) & =\mathbb{E}_{a_{t}}\left[r_{t}\right]+\gamma V^{\pi}\left(s_{t+1}\right) \\
V^{*}(s) & =\max _{a} Q^{*}(s, a)
\end{aligned}
$$

$$
Q^{*}\left(s_{t}, a_{t}\right)=\mathbb{E}_{a_{t}}\left[r_{t}\right]+\gamma \max _{a} Q^{*}\left(s_{t+1}, a\right)
$$

Natural Language Processing

Graph Neural Networks

Reinforcement Learning

Algorithmic Learning

Graph Neural Networks

The caffeine molecule
chemical name: 1, 3, 7 -trimethylxanthine chemical formula: $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2}$

b)
a)

Neural Message Passing

K-hop neighbourhood

Readout

Node selection
Node Classification

GNNs vs CNNs

Center element of the kernel is placed over the source pixel. The source pixel is then replaced with a weighted sum of itself and nearby pixels.

What are they good at?

What are they not good at?

Theoretical Limitations K-hop neighbourhood
WL test for isomorphism LOCAL/CONGEST

Why not do all-to-all message passing?

Oversmoothing

Graph Generation

Simulation

Surface mesh
Underlying particles

Particle representation

Algorithmic Learning

$$
3+4=?
$$

$18467238957+67836423785=?$

Algorithmic Learning

Augmenting NNs with Memory

Memory

Augmenting NNs with Algorithms

Augmenting Algorithms with NNs

```
def knapsack(items, capacity):
    if len(items) == 0:
        return 0
    first, *rest = items
    take = 0
    skip = knapsack(rest, capacity)
    return max(take, skip)
```


