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Motivation

Definition (meta)

referring to itself or to something of its own type (Camebridge Dictionary)

Remark
Meta Learning is also known as "Learning to Learn”
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Motivation

training data test datapoint
Cezanne

By Braque or Cezanne?
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Problem Definition - Supervised Learning
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Problem Definition - Generic Learning
”Normal” generic learning:
¢* ~ argmin L1(M,)
6

We solve this using a learning algorithm A and the given training resources. The
resulting loss is
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Problem Definition - Generic Learning

Reward
Fhservaﬁonﬁ
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Problem Definition - Generic Learning
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Reward Distribution of
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”Meta” generic learning:
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Models - RL?

RL2: FAST REINFORCEMENT LEARNING VIA SLOW
REINFORCEMENT LEARNING

Yan Duan’?, John Schulman?, Xi Chen'?, Peter L. Bartlett!, Ilya Sutskever?, Pieter Abbeel
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In RL? Ag is a RNN (with GRU cells actually).
The meta parameters 6 are the parameters of the RNN.
Hidden state activations h can be seen as internal state of the agent.

Trial 1 Trial 2

The meta problem can be cast as POMDP (more details: link).
As meta learning algorithm f the authors use standard TRPO.
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Models - RL? - Model Class

Models with entire neural networks as learning algorithm are known as black-box
meta learning models.

Example
Supervised learning:

Ae ytest
— — - — 10 M
Camx) g5y e () xtest

The meta learning algorithm f for such models is usually just an off-the-shelf
optimization algorithm (e.g. SGD: 0 < 6 — aVgL7(Ma, (1))
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Models - RL? - Results

Table 1: MAB Results. Each grid cell records the total reward averaged over 1000 different instances
of the bandit problem. We consider & € {5,10,50} bandits and n € {10,100, 500} episodes of
interaction. We highlight the best-performing algorithms in each setup according to the computed
mean, and we also highlight the other algorithms in that row whose performance is not significantly
different from the best one (determined by a one-sided ¢-test with p = 0.05).

Setup Random Gittins TS OTS UCB1 e-Greedy Greedy RL?
n=10,k=5 5.0 6.6 5.7 6.5 6.7 6.6 6.6 6.7
n=10,k=10 5.0 6.6 5.5 6.2 6.7 6.6 6.6 6.7
n=10,k=50 5.1 6.5 5.2 5.5 6.6 6.5 6.5 6.8
n=100,k=5 49.9 78.3 4.7 77.9 78.0 75.4 74.8 78.7
n =100,k =10 49.9 82.8 76.7 81.4 82.4 774 77.1 83.5
n =100,k =50 49.8 85.2 64.5 67.7 84.3 78.3 78.0 84.9
n=>500,k=5  249.8 405.8 402.0 406.7 405.8 388.2 380.6 401.6
n =500,k =10 249.0 437.8 4295 4389 437.1 408.0 395.0 432.5
n =500,k =50 249.6 463.7 4272 437.6 457.6 413.6 402.8 438.9
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Models - RL? - Results
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Figure: left: sample input; middle: first episode; right: second episode
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Models - Model Agnostic Meta Learning

Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks

Chelsea Finn' Pieter Abbeel ' > Sergey Levine '

19/30



Models - Model Agnostic Meta Learning - Model Definition
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Models - Model Agnostic Meta Learning - Model Definition

— meta-learning
69 ---- |earning/adaptation

VL

A
VL:l ‘/,/‘. 93

S
07 03

In MAML Ay is one (or a fixed number of) gradient descent steps.
Ap(T™) = 0 — avylr(Mp)

The meta parameters 6 are the initialization.
The meta learning algorithm f can be standard gradient descent with the following

update rule

0« 0-p Z Vol T(Mp—_avyLr(My))
TeTmeta—train
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Models - Model Agnostic Meta Learning - Model Class

MAML is an optimization-based meta learning model.
The idea of such models is to start with an existing learning algorithm like SGD and
learn parts of it.

¢ P— aV¢LT(M¢)

Possibile meta parameters are initialisation, learning rate, the entire update and more.
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Models - Model Agnostic Meta Learning - Results

Definition (n-way k-shot classification)

We get k different samples for each of n different unseen classes and evaluate the
model’s ability to classify new instances within the n classes.
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Definition (n-way k-shot classification)

We get k different samples for each of n different unseen classes and evaluate the
model’s ability to classify new instances within the n classes.

Omniglot data set: 1623 handwritten characters from 50 alphabets, 20 samples per

character
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Models - Model Agnostic Meta Learning - Results

Definition (n-way k-shot classification)
We get k different samples for each of n different unseen classes and evaluate the
model’s ability to classify new instances within the n classes.

Omniglot data set: 1623 handwritten characters from 50 alphabets, 20 samples per
character
Minilmagenet data set: 64 training classes, 12 validation classes, 24 test classes

Braille Bengali Sanskrit
FIPPR[C[ ]3] T SIEER meta-train set meta-test set
EEREREE EEEIEIRSIED
MEIKIEISIEIE) iirdsqﬂ 7
CRCSEIEIR SEEEIkIEE 2 |ﬁt.£‘
&[S [=[F[HSY NEMBEEIE ¢
HEHEESE ECEIHEINKIER 3 =
Bt Ei@&. %mwmﬂ
Greek Futurama Hebrew train set test set é
@[C[B[S[L EEIAB bk wlo[a[T]5 g < 1iiiﬁa!lliillll
WaR[x[V] PO heRnm (2 M @
o[8[ V[T [o CAREIE R BNTES i
MEEREE H
a|xN|ole eIE3 NERRIE &
PIEIT]Y 1n
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Models - Model Agnostic Meta Learning - Results

5-way Accuracy 20-way Accuracy
Omniglot (Lake et al., 2011) 1-shot 5-shot 1-shot 5-shot
MANN, no conv (Santoro et al., 2016) 82.8% 94.9% - -
MAML, no conv (ours) 89.7+1.1% | 97.5 £ 0.6% = —
Siamese nets (Koch, 2015) 97.3% 98.4% 88.2% 97.0%
matching nets (Vinyals et al., 2016) 98.1% 98.9% 93.8% 98.5%
neural statistician (Edwards & Storkey, 2017) 98.1% 99.5% 93.2% 98.1%
memory mod. (Kaiser et al., 2017) 98.4% 99.6% 95.0% 98.6%
MAML (ours) 98.7+0.4% | 99.9+0.1% | 95.8+0.3% | 98.9 £ 0.2%

5-way Accuracy
Minilmagenet (Ravi & Larochelle, 2017) 1-shot 5-shot
fine-tuning baseline 28.86 + 0.54% 49.79 + 0.79%

nearest neighbor baseline

41.08 £ 0.70%

51.04 £ 0.65%

matching nets (Vinyals et al., 2016)

43.56 £ 0.84%

55.31 + 0.73%

meta-learner LSTM (Ravi & Larochelle, 2017)

43.44 £ 0.77%

60.60 £ 0.71%

MAML, first order approx. (ours)

48.07 £ 1.75%

63.15 + 0.91%

MAML (ours)

48.70 + 1.84%

63.11 + 0.92%
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Models - Model Agnostic Meta Learning - Results

MAML g gradient steps



https://www.youtube.com/watch?v=o3C2ko2QdRs&ab_channel=rockyduan

Summary

» The idea of Meta Learning is to optimize the parameterised learning algorithm for
a class of tasks.

» RL? solves the problem by applying a RL algorithm to learn a RNN which
represents the RL algorithm (applies RL to RL).

» MAML searches for a good initialisation of gradient based models.

» MAML does scale very well and is broadly applied.
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Q&A

Some interesting questions:
» What is the meta learning algorithm and meta parameters of animals/nature?

> Have we formulated the problem we might want to solve with meta learning?
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Appendix

Why there are no higher order terms in multi-step MAML.:

VoAg(TY) = V(0 — ave LT (My))
= Vg((9 — OngLT(Mg) — Ong/LT(Mgl))
06’

=1 —avilr(My) — avi Lr(My) 5
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