Natural Language Processing

Benchmarks/Tasks/Metrics

Neville Walo

Q	natural			×							
G	natural language	processing		Entfernen							
Q	natural resource	s									
Q	natural disasters	;									
Q	natural selection	I.									
Q	natural history m	nuseum									
Q	natural language processing definition										
E.	Natural Born Kille Film (1994)	ers									
Q	natural mojo										
Q	natural numbers										
Q	natural gas										
		Google Suche	Auf gut Glück!								
			Unangemesser	e Vervollständigungen melden Weitere Informationen							

Ungefähr 933'000'000 Ergebnisse (0.62 Sekunden)

Wissenschaftliche Artikel zu natural language processing

Natural language processing - Chowdhury - Zitiert von: 944 Natural language processing - Liddy - Zitiert von: 518 Handbook of natural language processing - Indurkhya - Zitiert von: 887

en.wikipedia.org > wiki > Natural_... - Diese Seite übersetzen

Natural language processing - Wikipedia

Natural language processing (NLP) is a subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers ... Natural-language understanding · Natural-language generation · Sentiment analysis

www.bigdata-insider.de > was-ist-natural-language-proc... *

Was ist Natural Language Processing? - BigData-Insider

01.09.2016 — Die Abkürzung **NLP** steht für **Natural Language Processing** und beschreibt Techniken und Methoden zur maschinellen Verarbeitung ...

~
~
~
~

Natural language processing

<

Aus dem Englischen übersetzt - Die Verarbeitung natürlicher Sprache ist ein Teilgebiet der Linguistik, Informatik und künstlichen Intelligenz, das sich mit den Wechselwirkungen zwischen Computern und menschlicher Sprache befasst, ... Wikipedia (Englisch)

Ursprüngliche Beschreibung aufrufen V

Andere suchten auch nach

Künstliche

Intelligenz

Maschin...

Lernen

Computer

Vision

Künstliches Internet der neuronales Dinge Netz

Über 15 weitere ansehen

Feedback geben

\equiv **Google** Übersetzer

ŻA Text ■ Dokumente								
ENGLISCH – ERKANNT DEUTSCH ENGLISCH FRANZÖSISCH	\sim	¢		ENGLISCH	FRANZÖSISCH	\checkmark		
Natural Language Processing		×	Verarbeit	ung natürl	icher Sprache	e 🤡		☆
♥ ■	27 / 5000						P	<
							Feed	lback geben

https://geeksfl.com/blog/best-voice-assistant/

What is Natural Language Processing?

- **Big picture:** A set of methods and algorithms for making natural languages accessible to computers
- Analysis (NL $\rightarrow \mathbb{R}$), e.g., topic classification
- Generation ($\mathbb{R} \rightarrow NL$), e.g., chat bots
- Acquisition of $\mathbb R$ from knowledge and data, e.g., modeling
- \mathbb{R} : some representation interpretable by a machine

Benchmarks

- GLUE (General Language Understanding Evaluation)
- SuperGLUE (Successor of GLUE)

GLUE

SuperGLUE Tasks

Name	Identifier	Download	More Info	Metric
Broadcoverage Diagnostics	AX-b	*		Matthew's Corr
CommitmentBank	СВ	±		Avg. F1 / Accuracy
Choice of Plausible Alternatives	СОРА	±		Accuracy
Multi-Sentence Reading Comprehension	MultiRC	*		F1a / EM
Recognizing Textual Entailment	RTE	*		Accuracy
Words in Context	WiC	*		Accuracy
The Winograd Schema Challenge	WSC	±		Accuracy
BoolQ	BoolQ	*		Accuracy
Reading Comprehension with Commonsense Reasoning	ReCoRD	*		F1 / Accuracy
Winogender Schema Diagnostics	AX-g	*		Gender Parity / Accuracy

DOWNLOAD ALL DATA

Leaderboard Version: 2.0

	Rank	Name	Model	URL	Score	BoolQ	СВ	COPA	MultiRC	ReCoRD	RTE	WiC	WSC	AX-g	AX-b
+	1	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4		90.3	90.4	95.7/97.6	98.4	88.2/63.7	94.5/94.1	93.2	77.5	95.9	93.3/93.8	66.7
+	2	Zirui Wang	T5 + Meena, Single Model (Meena Team - Google Brain)		90.2	91.3	95.8/97.6	97.4	88.3/63.0	94.2/93.5	92.7	77.9	95.9	88.8/89.9	66.5
	3	SuperGLUE Human Baselines	SuperGLUE Human Baselines		89.8	89.0	95.8/98.9	100.0	81.8/51.9	91.7/91.3	93.6	80.0	100.0	99.3/99.7	76.6
+	4	T5 Team - Google	Т5		89.3	91.2	93.9/96.8	94.8	88.1/63.3	94.1/93.4	92.5	76.9	93.8	92.7/91.9	65.6
+	5	Huawei Noah's Ark Lab	NEZHA-Plus		86.7	87.8	94.4/96.0	93.6	84.6/55.1	90.1/89.6	89.1	74.6	93.2	87.1/74.4	58.0

Choice of Plausible Alternatives (COPA)

- Premise: The man broke his toe. What was the CAUSE of this? Alternative 1: He got a hole in his sock. Alternative 2: He dropped a hammer on his foot.
- Premise: I tipped the bottle. What happened as a RESULT? Alternative 1: The liquid in the bottle froze. Alternative 2: The liquid in the bottle poured out.
- Premise: I knocked on my neighbor's door. What happened as a RESULT?

Alternative 1: My neighbor invited me in.

Alternative 2: My neighbor left his house.

Choice of Plausible Alternatives (COPA)

• Metric: Accuracy

	Leaderboard Version: 2.0														
	Rank	Name	Model	URL	Score	BoolQ	СВ	СОРА	MultiRC	ReCoRD	RTE	WiC	WSC	AX-g	AX-b
+	1	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4		90.3	90.4	95.7/97.6	98.4	88.2/63.7	94.5/94.1	93.2	77.5	95.9	93.3/93.8	66.7
+	2	Zirui Wang	T5 + Meena, Single Model (Meena Team - Google Brain)		90.2	91.3	95.8/97.6	97.4	88.3/63.0	94.2/93.5	92.7	77.9	95.9	88.8/89.9	66.5
	3	SuperGLUE Human Baselines	SuperGLUE Human Baselines		89.8	89.0	95.8/98.9	100.0	81.8/51.9	91.7/91.3	93.6	80.0	100.0	99.3/99.7	76.6
+	4	T5 Team - Google	Τ5		89.3	91.2	93.9/96.8	94.8	88.1/63.3	94.1/93.4	92.5	76.9	93.8	92.7/91.9	65.6
+	5	Huawei Noah's Ark Lab	NEZHA-Plus		86.7	87.8	94.4/96.0	93.6	84.6/55.1	90.1/89.6	89.1	74.6	93.2	87.1/74.4	58.0

Reading Comprehension over Multiple Sentences (MultiRC)

Paragraph:

Sent 1: Most young mammals, including humans, like to play. Sent 2: Play is one way they learn the skills that they will need as adults.

- Sent 3: Think about how kittens play.
- Sent 4: They pounce on toys and chase each other.
- Sent 5: This helps them learn how to be better predators. Sent 6: Big cats also play.
- Sent 7: The lion cubs pictured below are playing.
- Sent 8: At the same time, they are also practicing their hunting skills.
- Sent 9: The dogs are playing tug-of-war with a toy.
- Sent 10: What do you think they are learning by playing together this way?
- Sent 11: Human children learn by playing as well.
- Sent 12: For example, playing games and sports can help them learn to follow rules.
- Sent 13: They also learn to work together.
- Sent 14: The young child pictured below is playing in the sand. Sent 15: She is learning about the world through play.
- Sent 16: What do you think she might be learning?

Question: What do human children learn by playing games and sports?

- □ They learn to follow rules and work together.
- They learn about the world
- Learn to work together
- $\ensuremath{\scriptstyle \boxtimes}$ skills that they will need as adult
- they learn about how to cheat
- how to hunt
- tug-of-war
- only learns to follow rules
- only learns working together
- hunting skills

Reading Comprehension over Multiple Sentences (MultiRC)

• Metric: F1a / EM (Exact Match)

	Leaderboard Version: 2.0														
	Rank	Name	Model	URL	Score	BoolQ	CB	COPA	MultiRC	ReCoRD	RTE	WiC	WSC	AX-g	AX-b
+	1	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4		90.3	90.4	95.7/97.6	98.4	88.2/63.7	94.5/94.1	93.2	77.5	95.9	93.3/93.8	66.7
+	2	Zirui Wang	T5 + Meena, Single Model (Meena Team - Google Brain)		90.2	91.3	95.8/97.6	97.4	88.3/63.0	94.2/93.5	92.7	77.9	95.9	88.8/89.9	66.5
	3	SuperGLUE Human Baselines	SuperGLUE Human Baselines		89.8	89.0	95.8/98.9	100.0	81.8/51.9	91.7/91.3	93.6	80.0	100.0	99.3/99.7	76.6
+	4	T5 Team - Google	Т5		89.3	91.2	93.9/96.8	94.8	88.1/63.3	94.1/93.4	92.5	76.9	93.8	92.7/91.9	65.6
+	5	Huawei Noah's Ark Lab	NEZHA-Plus		86.7	87.8	94.4/96.0	93.6	84.6/55.1	90.1/89.6	89.1	74.6	93.2	87.1/74.4	58.0

Words in Context (WiC)

Label	Target	Context-1	Context-2
F	bed	There's a lot of trash on the <u>bed</u> of the river	I keep a glass of water next to my <u>bed</u> when I sleep
F	land	The pilot managed to <u>land</u> the airplane safely	The enemy landed several of our aircrafts
F	justify	Justify the margins	The end justifies the means
Т	beat	We <u>beat</u> the competition	Agassi <u>beat</u> Becker in the tennis championship
Т	air	<u>Air</u> pollution	Open a window and let in some <u>air</u>
Т	window	The expanded <u>window</u> will give us time to catch the thieves	You have a two-hour <u>window</u> of clear weather to finish working on the lawn

Words in Context (WiC)

• Metric: Accuracy

				Leaderboa	rd Versio	on: 2.0									
	Rank	Name	Model	URL	Score	BoolQ	CB	СОРА	MultiRC	ReCoRD	RTE	WiC	WSC	AX-g	AX-b
+	1	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4		90.3	90.4	95.7/97.6	98.4	88.2/63.7	94.5/94.1	93.2	77.5	95.9	93.3/93.8	66.7
+	2	Zirui Wang	T5 + Meena, Single Model (Meena Team - Google Brain)		90.2	91.3	95.8/97.6	97.4	88.3/63.0	94.2/93.5	92.7	77.9	95.9	88.8/89.9	66.5
	3	SuperGLUE Human Baselines	SuperGLUE Human Baselines		89.8	89.0	95.8/98.9	100.0	81.8/51.9	91.7/91.3	93.6	80.0	100.0	99.3/99.7	76.6
+	4	T5 Team - Google	Τ5		89.3	91.2	93.9/96.8	94.8	88.1/63.3	94.1/93.4	92.5	76.9	93.8	92.7/91.9	65.6
+	5	Huawei Noah's Ark Lab	NEZHA-Plus		86.7	87.8	94.4/96.0	93.6	84.6/55.1	90.1/89.6	89.1	74.6	93.2	87.1/74.4	58.0

Machine Translation

- Task: (NL -> NL)
- Metric: ?

German

Auf dem Tisch ist eine Katze.

English

There is a cat on the table. On the table is a cat. There's a cat on the table. A cat is on a table. On the table is a kitty cat. On the table is a bird. On the desk there is a cat. Cat on table. There are cats on the table. There was a cat on the table.

Machine Translation

- Task: (NL -> NL)
- Metric:
 - BLEU (Bilingual Evaluation Understudy)
 - ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
 - METEOR (Metric for Evaluation of Translation with Explicit ORdering)

N-Gram

- An N-gram is a contiguous sequence of N items from a given sample of text or speech.
- The items can be phonemes, syllables, letters, words or base pairs according to the application.

Name	Ν	Example
Unigram	1	A
Bigram	2	AB
Trigram	3	UNO
4-gram	4	DATA
N-gram	Ν	

N-gram Precision

Candidate	the	the	the	the	the	the	the
Reference 1	the	cat	is	on	the	mat	
Reference 2	there	is	а	cat	on	the	mat

Unigram – Precision =
$$\frac{m}{w_t} = \frac{7}{7} = 1$$

Bigram – Precision = $\frac{m}{w_t} = \frac{0}{1} = 0$

- m: N-grams from the candidate that are found in the reference
- w_t : N-grams in the candidate

BLEU

- Main idea: The closer a machine translation is to a professional human translation, the better it is.
- Scores are calculated over sentences by comparing them with a set of good quality reference translations.
- Scores are then averaged over the whole text to output a final score in [0,1]. (1 good translation, 0 bad translation)

BLEU

Candidate	the	the	the	the	the	the	the
Reference 1	the	cat	is	on	the	mat	
Reference 2	there	is	а	cat	on	the	mat

$$Unigram - Precision = \frac{\sum_{w} \min(m_{w}, m_{w}^{max})}{w_{t}} = \frac{2}{7}$$

- m_w : N-grams from the candidate that are found in the reference for N-gram w
- m_w^{max} : For each N-gram in the candidate translation, the algorithm takes its maximum total count in any of the reference translations.
- w_t : N-grams in the candidate

BLEU

Candidate	the	cat					
Reference 1	the	cat	is	on	the	mat	
Reference 2	there	is	а	cat	on	the	mat

$$Unigram - Precision = \frac{\sum_{w} \min(m_{w}, m_{w}^{max})}{w_{t}} = \frac{2}{2} = 1$$

$$Bigram - Precision = \frac{\sum_{w} \min(m_{w}, m_{w}^{max})}{w_{t}} = \frac{1}{1} = 1$$

Problems:

- Favors short translations
- Adding more reference translation increases score
- Score ≠ Quality

Solutions:

- Punish too short translations
- Consider also recall

ROUGE

- ROUGE-N
- ROUGE-L
- ROUGE-W
- ROUGE-S

ROUGE-N

Candidate 1	I	always	invariably	perpetually	do
Candidate 2	I	always	do		
Reference 1	I	always	do		
Reference 2	I	invariably	do		
Reference 3	I	perpetually	do		

Candidate 1:
$$Unigram - Recall = \frac{9}{9} = 1$$

Candidate 2:
$$Unigram - Recall = \frac{7}{9} = 0.77\overline{7}$$

ROUGE-N

Candidate 1	I	always	invariably	perpetually	do
Candidate 2	I	always	do		
Reference 1	I	always	do		
Reference 2	I	invariably	do		
Reference 3	I	perpetually	do		

 $ROUGE - N_{Multi} = \max_{r \in References} ROUGE - N(r, candidate)$

Candidate 1: $ROUGE - 1_{Multi} = \frac{3}{3} = 1$ Candidate 2: $ROUGE - 1_{Multi} = \frac{3}{3} = 1$

ROUGE

- ROUGE-L: Longest Common Subsequence
- ROUGE-W: Weighted Longest Common Subsequence
- ROUGE-S: Skip-Bigram Co-Occurrence Statistics

METEOR

- Successor of BLEU
- Based on weighted harmonic mean of unigram precision and recall
- Stemming
 - fishing, fished, fisher = fish
- Synonym Matching
 - buy = purchase

METEOR

• Find maximum alignment with the fewest crosses

- *m* : Number of connections between candidate and reference
- w_r : Number of Unigrams in the reference
- w_t : Number of Unigrams in the candidate

METEOR

• Combine precision and recall

 $F_{mean} = \frac{10PR}{R+9P}$

• Calculate penalty p on number of crosses

 $M = F_{mean}(1-p)$

- If there are more reference solutions, select highest score
 - Same as ROUGE

Is there a limit?

- GPT-3
 - General language model
 - 175 billion parameters
 - Turing test?

Giving GPT-3 a Turing Test – Common Sense

Q: What is your favorite animal? A: My favorite animal is a dog.

Q: Why? A: Because dogs are loyal and friendly.

Q: What are two reasons that a dog might be in a bad mood? A: Two reasons that a dog might be in a bad mood are if it is hungry or if it is hot.

Q: How many eyes does a giraffe have? A: A giraffe has two eyes.

Q: How many legs does a frog have? A: A frog has four legs.

Q: Are there any animals with three legs? A: No, there are no animals with three legs.

Q: Why don't animals have three legs? A: Animals don't have three legs because they would fall over.

Giving GPT-3 a Turing Test – Common Sense

Q: How do you sporgle a morgle? A: You sporgle a morgle by using a sporgle.

Q: How many bonks are in a quoit? A: There are three bonks in a quoit.

Q: How many rainbows does it take to jump from Hawaii to seventeen? A: It takes two rainbows to jump from Hawaii to seventeen.

Q: Which colorless green ideas sleep furiously?A: Ideas that are colorless, green, and sleep furiously are the ideas of a sleep furiously.

Q: Do you understand these questions?

A: I understand these questions.

Giving GPT-3 a Turing Test – Logic

Q: When counting, what number comes before 100? A: Ninety-nine comes before 100.

Q: When counting, what number comes before 123? A: One hundred and twenty-two comes before 123.

Q: When counting, what number comes before 1000? A: Nine hundred and ninety-nine comes before 1000.

Q: When counting, what number comes before 10,000? A: Nine thousand and ninety-nine comes before 10,000.

Q: When counting, what number comes before a million? A: Nine hundred thousand and ninety-nine comes before a million.

Q: Write one line of Ruby code to reverse an array. A: ary.reverse

Q: Write one line of Ruby code to count how many X's are in an array. A: ary.count { |x| x = 'X' }

Q: Reverse the following array: [1, 3, 5, 6, 10, 4, 2, 77] A: [10, 6, 4, 2, 77, 3, 5, 1]

Q: How many X's are in this array: [1, 3, 5, 6, 10, 4, 2, 77] A: 2

Giving GPT-3 a Turing Test – Logic

Q: If I have a marble and a paper clip in a box, put a pencil in the box, and remove the marble, what is left? A: A paper clip.

Q: If I have two shoes in a box, put a pencil in the box, and remove one shoe, what is left? A: A shoe.

Q: If I put a pencil in a box, then put another pencil in the box, what is in the box? A: Two pencils.

Q: Then if I take out a pencil and put in a frog, what is in the box? A: A frog.

Giving GPT-3 a Turing Test

- Some of the problems can be solved by using a different prompt
 - E.g. If the question is nonsense say «get real»

Conclusion

- NLP is everywhere
- Benchmarks: GLUE and SuperGLUE
 - State-of-the-art performance
- Metrics for machine translation
 - BLEU
 - ROUGE
 - METEOR
- Limitations of GPT-3