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Example: Tic Tac Toe

Agent: (Al) Player

State: Current board configuration

l ‘ X X | Action: Placing X (or O)

Reward: Points for winning / losing




Model-based Reinforcement Learning

Different dynamic states of an environment and how these states lead to a reward

Why?
- Better sampling efficiency

Better
Sample Efficient

Off-policy
Q-learning
(1 M time steps)

Model-based
(100 time steps)

Actor-critic

- Models can be reused for different tasks

Less
Sample Efficient

On-policy Evolutionary/
Policy Gradient gradient-free
(10 M time steps) (100 M time steps)



Simplified Algorithm

1. Create dynamics model

2. Use model to improve policy and choose actions



Known Models
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Known Models

We have a mathematical equation that allows us to calculate and select the best next state
using the and the current action.

This action is called planning.



Planning

For discrete actions: search
algorithms that create decision trees

For continuous actions: trajectory
optimization techniques such as
model predictive control
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Types of Models

In general, we can think of different approaches to modeling the environment.

Forward Model
Backward/Reverse Model

Inverse Model

So far, we have only looked at forward models!



Forward Model

s’ = f(s, a)

Place X in the top left corner

X

Current action

Next state



Backward Model
(s, a) =1(s)

X

Place X in theftop left corner

Precursor action

Given state

Can you think of a case where the precursor state and the precursor action are not unique?



Inverse Model

a=f(s,s)

Place X in theftop left corner

X

Precursor action

Given state



Working Examples

Despite the added challenges, backward and inverse models can be useful in practice.

Prioritized Sweeping Rapidly-Exploring Random
(Backward Model) Tree (Inverse Model)



Modified Algorithm

1. Create dynamics model (choose the appropriate type)

2. Use model to improve policy and choose actions



What about unknown models?

Here's where our machine learning models come in &

Model-based Deep RL with a neural network



Learning the Model

Estimation of the model of the dynamics is a supervised learning problem.

p(s’ls, a)

Maximize the likelihood of the next state given the and the current action.

However, we now also need data that we generally generate from a base policy.



Learning the Model

Just like with any supervised learning task, we can use a deterministic or a probabilistic model.

values within one
standard deviation

A f(x2) = 200

f(x1)=150

Posterior Prediction with Uncertainty

Gaussian Processes



Learning the Model

We might even be able to combine the two approaches using neural processes!

Model : ConvLNP | Data : Periodic Kernel | Num. Context : 0 ConvCiPx! | Celebal28 | C=0.5%

Model
Extrapolation Boundary
—— Oracle GP

Context
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Model : ConvLNP | Data : Noisy Matern Kernel | Num. Context : 0

Model
Extrapolation Boundary
—— Oracle GP

Pred. Std

Cubic Interp.




Modified Algorithm

1. data under current (base) policy
2. Create dynamics model (choose the appropriate type)
3. from collected data

4. Use model to improve policy and choose actions



At each time step, our agent
receives an observation from
the environment.

World Model

The|Vision Model (V) encodes the
high-dimensional observation into
a low-dimensional latent vector.

The Memory RNN (M)|integrates

the historical codes to create a
representation that can predict
future states.

A small Controller (C) uses the
representations from both
V and M to select good actions.

The agent performs actions that

go back and affect the environment.

Example: World Models
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World Models: Vision Model

Original Observed Frame
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We can use a variational autoencoder for the latent representation.




World Models: Memory RNN
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And an RNN with a Mixture Density Network
output layer as a predictive model.




World Models: Final Architecture
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The bad news

Despite all our efforts, small errors still compound over actions.



Iterative Learning

fis not modeled

y here before
ﬁW

Model is prone to drifting, hence we need to continue to fit it.



Modified Algorithm

1. data under current (base) policy

2. Create dynamics model (choose the appropriate type)
3. from collected data

4. Use model to improve policy and choose actions

5. Add the resulting data to the collected data



Executing Actions

Replan at every time step
to take corrective action

e N

Agent executes all planned actions before fitting the model again. We
may already be off-course.



Modified Algorithm

1. data under current (base) policy

2. Create dynamics model (choose the appropriate type)

3. from collected data

4. Use model to improve policy and choose the first planned action

5. Add the resulting data to the collected data



Overfitting in Model-based RL

Standard overfitting:

Neural network performs well on training data, but
poorly on test data

In our case: Predicting s’ from (-, a)
Additional overfitting challenge in Model-based RL:
Model bias

Policy optimization tends to exploit regions with
insufficient data.




The Takeaway Message

Model-based reinforcement learning is great

If you have a good model!



The Takeaway Message

Resulting policy from model-based architectures good in but not the

However, with some slight adjustments, we can improve the weaknesses.

— Active area @



Final Algorithm?

1. data under current (base) policy

2. Create dynamics model (choose the appropriate type) ~ — Improvements needed?
3. from collected data

4. Use model to improve policy and choose the first planned action

5. Add the resulting data to the collected data



Sources

Books and Papers:
- "Reinforcement Learning: An Introduction” (1998)
“Model-based Reinforcement Learning: A Survey” (2021)
“Learning to Paint With Model-based Deep Reinforcement Learning” (2019)
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Additional References:

- https://jonathan-hui.medium.com/rl-model-based-reinforcement-learning-3c2b6f0aa323
https://medium.com/analytics-vidhya/introduction-to-model-based-reinforcement-learning-6db0573160da
https://worldmodels.github.io/
https://vanndubs.github.io/Neural-Process-Family/text/Intro.html
https://qithub.com/xenomeno/RodManeuvering
https://towardsdatascience.com/too-many-terms-ruins-the-regression-7cf533a0c612
https://towardsdatascience.com/a-hitchhikers-guide-to-mixture-density-networks-76b435826c¢ca
https://www.cs.cmu.edu/~motionplanning/lecture/lec20.pdf
https://bair.berkeley.edu/blog/2019/12/12/mbpo/
https://towardsdatascience.com/reinforcement-learning-g-learning-with-decision-trees-ecb1215d9131
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