
Model-based Reinforcement Learning
Arman Raayatsanati



 

Recap: Reinforcement Learning



Example: Tic Tac Toe

Agent: (AI) PlayerAgent: (AI) Player

State: Current board configuration

Agent: (AI) Player

State: Current board configuration

Action: Placing X (or O)

Agent: (AI) Player

State: Current board configuration

Action: Placing X (or O)

Reward: Points for winning / losing



 

Model-based Reinforcement Learning

Different dynamic states of an environment and how these states lead to a reward

Why? 
- Better sampling efficiency

- Models can be reused for different tasks



 

Simplified Algorithm

1. Create dynamics model

2. Use model to improve policy and choose actions



Known Models

AlphaGo Physical models



 

Known Models

s’ = f(s, a)

We have a mathematical equation that allows us to calculate and select the best next state 
using the current state and the current action. 

This action is called planning.



Planning

For discrete actions: search 
algorithms that create decision trees

For continuous actions: trajectory 
optimization techniques such as 
model predictive control



 

Types of Models

- Forward Model

- Backward/Reverse Model

- Inverse Model

In general, we can think of different approaches to modeling the environment.

So far, we have only looked at forward models!



 

Forward Model

s’ = f(s, a)

Place X in the top left corner

Current state

Current action

Next state



 

Backward Model

(s, a) = f(s’)

Place X in the top left corner

Precursor state

Precursor action

Given state

Can you think of a case where the precursor state and the precursor action are not unique?



 

Inverse Model

a = f(s, s’)

Place X in the top left corner

Precursor state

Precursor action

Given state



Working Examples
￼

Rapidly-Exploring Random 
Tree (Inverse Model)

Prioritized Sweeping 
(Backward Model)

Despite the added challenges, backward and inverse models can be useful in practice.



 

Modified Algorithm

1. Create dynamics model (choose the appropriate type)

2. Use model to improve policy and choose actions



What about unknown models?

Here’s where our machine learning models come in ☺ 

Model-based Deep RL with a neural network



Learning the Model

Estimation of the model of the dynamics is a supervised learning problem.

p(s’|s, a)

Maximize the likelihood of the next state given the current state and the current action.

However, we now also need data that we generally generate from a base policy.



Learning the Model
Just like with any supervised learning task, we can use a deterministic or a probabilistic model.

Gaussian Processes



Learning the Model
We might even be able to combine the two approaches using neural processes!



 

Modified Algorithm

1. Collect data under current (base) policy

2. Create dynamics model (choose the appropriate type) 

3. Learn from collected data

4. Use model to improve policy and choose actions



Example: World Models



World Models: Vision Model

We can use a variational autoencoder for the latent representation.



World Models: Memory RNN

And an RNN with a Mixture Density Network 
output layer as a predictive model.



World Models: Final Architecture



The bad news

Despite all our efforts, small errors still compound over actions.



 

Iterative Learning

Model is prone to drifting, hence we need to continue to fit it.



 

Modified Algorithm

1. Collect data under current (base) policy

2. Create dynamics model (choose the appropriate type) 

3. Learn from collected data

4. Use model to improve policy and choose actions

5. Add the resulting data to the collected data



Executing Actions

Agent executes all planned actions before fitting the model again. We 
may already be off-course.



 

Modified Algorithm

1. Collect data under current (base) policy

2. Create dynamics model (choose the appropriate type) 

3. Learn from collected data

4. Use model to improve policy and choose the first planned action

5. Add the resulting data to the collected data



 

Overfitting in Model-based RL

Standard overfitting:

Neural network performs well on training data, but 
poorly on test data

In our case: Predicting s’ from (s, a)

Additional overfitting challenge in Model-based RL: 
Model bias

Policy optimization tends to exploit regions with 
insufficient data.



 

The Takeaway Message

Model-based reinforcement learning is great

If you have a good model!



 

The Takeaway Message

Resulting policy from model-based architectures good in simulations but not the real world!

However, with some slight adjustments, we can improve the weaknesses.

→ Active research area ☺



 

Final Algorithm?

1. Collect data under current (base) policy

2. Create dynamics model (choose the appropriate type) 

3. Learn from collected data

4. Use model to improve policy and choose the first planned action

5. Add the resulting data to the collected data

→ Improvements needed?



 

Sources
Books and Papers:

- “Reinforcement Learning: An Introduction” (1998)
- “Model-based Reinforcement Learning: A Survey” (2021)
- “Learning to Paint With Model-based Deep Reinforcement Learning” (2019)
- “Algorithmic Framework for Model-based Deep Reinforcement Learning with Theoretical Guarantees” (2021)
- “Reinforcement Learning via Gaussian Processes with Neural Network Dual Kernels” (2020)
- “A saturation-balancing control method for enhancing dynamic vehicle stability” (2013)

Additional References:
- https://jonathan-hui.medium.com/rl-model-based-reinforcement-learning-3c2b6f0aa323
- https://medium.com/analytics-vidhya/introduction-to-model-based-reinforcement-learning-6db0573160da
- https://worldmodels.github.io/
- https://yanndubs.github.io/Neural-Process-Family/text/Intro.html
- https://github.com/xenomeno/RodManeuvering
- https://towardsdatascience.com/too-many-terms-ruins-the-regression-7cf533a0c612
- https://towardsdatascience.com/a-hitchhikers-guide-to-mixture-density-networks-76b435826cca
- https://www.cs.cmu.edu/~motionplanning/lecture/lec20.pdf
- https://bair.berkeley.edu/blog/2019/12/12/mbpo/
- https://towardsdatascience.com/reinforcement-learning-q-learning-with-decision-trees-ecb1215d9131
- https://medium.com/the-official-integrate-ai-blog/understanding-reinforcement-learning-93d4e34e5698

Additional Media:
- http://www.norsemathology.org/wiki/images/f/f9/Tic-tac-toe-game-tree.png
- https://thumbs.gfycat.com/AnimatedAmazingCirriped-size_restricted.gif
- https://y.yarn.co/295cb135-2a7a-4019-9130-c0ab1aef6e57_screenshot.jpg


