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Sample Solution to Exercise 1

1 Vertex Coloring

If the nodes omit the “undecided” messages, then each node sends exactly two messages to each
neighbor, one in the first round and one after assigning a color.

a) To express the worst-case message complexity in terms of n, we have to think of a topology
that maximizes the number of neighbors of each node. Such a topology is a clique, where
each neighbor has n − 1 neighbors. Then, as each node sends 2 messages to each of its
neighbors, the message complexity is 2n(n− 1) in the worst case.

b) There are 4 messages sent over each edge: two in the first round, two after assigning a color.
Hence, the total number of messages is 4m.

2 TDMA

a) The resulting coloring is depicted in Figure 1. Note that the clique of size 3 needs at least
3 colors. Hence, our solution is optimal.
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Figure 1: The slots for the wireless network

b) We will use additional edges to model the new interferences. Two neighbors of a node are
not able to send messages at the same time if they have different colors. Therefore, for every
node, we will add an edge between every two neighbors of that node.

The resulting coloring is depicted in Figure 2. There are multiple cliques of size 4 in the new
graph; any of these needs at least 4 colors. Hence, our solution is optimal.
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Figure 2: The slots for the wireless network with improved communication. The additional con-
straints are shown in blue.

c) Every pair of lectures that is selected by a student cannot take place at the same time. Thus,
they cannot be colored with the same color. This leads us to the solution shown in Figure 3.
The graph can be colored with 3 colors.
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Figure 3: The resulting graph with P being shorthand for Principles of Distributed Computing,
S for Statistical Learning Theory, U for Ubiquitous Computing, G for Graph Theory, and C for
Cryptography. Note that 3 colors are sufficient.

3 Coloring Trees

a) The log-star algorithm for the ring is basically identical to the algorithm for trees. Nodes
do not have a parent in the ring, therefore we simply define the left neighbor of any node to
be its “parent”. Given this definition, we can run the normal log-star algorithm. Using the
same argument as for trees, it can be shown that no two neighboring nodes choose the same
color. Note that we can omit the “shift” step, as all “children” (i.e., the right neighbor)
always have the same color.

b) We build the algorithm step by step. The shape of the algorithm is similar to the solution
of the previous task, consisting of a “6-color” phase and a Reduction phase.

What happens when the nodes do not know n?

Firstly, let’s think of what happens in the algorithm from the previous task when n is
unknown.

� the nodes cannot compute log∗(n), so they do not know when they can look for a color
in {0, 1, 2};

� the nodes only know their own color and the colors of their neighbors.
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When can a node stop the “6-color” phase?

A natural question is the following: Can a node stop the “6-color” phase when its own color
and the colors of its neighbor are in R?
Well, almost. Somewhere in the ring, there might be a node with a color greater than 5 that
will trigger other colors in the ring to change and might cause conflicts.

The nodes could announce everyone when obtaining a color in R: they could send a message
to their neighbors, the neighbors would forward this message until this message reaches every
node in the ring (in roughly n/2 steps). Intuitively, when everyone has announced that they
found a color in R, the nodes can start reducing the colors. However, an algorithm following
this idea would require O(n log∗ n) rounds, so it’s much faster to simply color the ring with
3 colors in n/2 steps.

Then, let’s think of the following idea: when a node v gets a color in R, it will stop the
“6-color” phase. What happens with v’s left neighbor v` and right neighbor vr?

� v`’s color is in R: it will stop the “6-color” phase as well;

� v`’s color is not in R: v` will obtain a color in R at a later round, and that color
might be the same as v’s color! To fix this issue, when v` sees that the color of its right
neighbor (v) is in R, it takes a special color r, with the meaning “The color of my right
neighbor is in R. I will now stop this phase” and stops the “6-color” phase;

� vr’s color is in R: it will stop the “6-color” phase as well;

� vr’s color is not in R: vr’s color is computed based on its current color and on v’s color.
Hence, vr will never obtain a color in R. To fix this issue, when vr sees that the color
of its left neighbor (v) is in R, it takes a special color `, with the meaning “The color
of my left neighbor is in R. I will now stop this phase”, and stops the “6-color” phase.

To conclude: when a node v gets a color in R∪ {`, r}, it will stop the “6-color” phase.

Algorithm 1 “(6, `, r)-Coloring” Phase - Version 1

1: send cv to both neighbors
2: while cv /∈ R ∪ {`, r} do
3: if c` ∈ R then
4: cv := `;
5: else if cr ∈ R then
6: cv := r;
7: else
8: We will somehow use the “6-color” Algorithm here
9: send cv to both neighbors

How do we apply the ideas from the “6-color” Algorithm?

We will now discuss line 8 of the algorithm above: how can we use the “6-color” Algorithm?
What happens with the nodes whose left neighbor is colored with ` or r? Intuitively, we will
run the “6-color” Algorithm as if each segment between a node colored with ` and a node
colored with r is a tree: the node whose left neighbor’s color is ` will be the root.

For simplicity, each node will use the subroutine presented in Algorithm 2 for computing a
new color (lines 5–8 of the “6-color” Algorithm).

Algorithm 2 new color(c`, cv)

1: interpret c` and cv as bit-strings
2: let i be the index of the rightmost bit b where cv and c` differ
3: return cv = 2i + b

We now present the updated “(6, `, r)-Coloring” phase.
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Algorithm 3 “(6, `, r)-Coloring” Phase - Version 2

1: send cv to both neighbors
2: while cv /∈ R ∪ {`, r} do
3: if c` ∈ R then
4: cv := `;
5: else if cr ∈ R then
6: cv := r;
7: else if c` = ` then
8: cv = new color(arbitrary color, cv) (“root”)
9: else

10: cv = new color(c`, cv)
11: send cv to both neighbors

The time complexity of this algorithm is O(log∗ n). We need to show that two neighbors
cannot obtain the same color. We will prove this in detail for `.

Lemma. Two neighbors u and v cannot both be colored `.

Proof. Let u be the parent of v w.l.o.g. A node only adopts ` if its color is not in R, but
its parent is in R. This condition cannot hold for two neighboring nodes at the same time.
Hence, u and v cannot reach color ` in the same round.

If u reaches color ` first, then v will reduce its color according to an arbitrary color from R
in each following round and thus, it will never choose color `.

If v reaches color ` first, u’s color must be in R and thus u will not change its color again,
in particular not to color `, proving that two neighboring nodes cannot be colored `.

A similar argument applies to the color r. The logic of Algorithm 6-color ensures that no
two neighboring nodes get the same color c ∈ R. Note that a node v to the right of a node
colored ` acts like the root in a tree and can thus simply choose an arbitrary color c ∈ R in
each round without causing any conflicts.

When a node exits this loop, its color will be in R∪{`, r}. Can we start the reduction phase
now? Not yet. We should wait until the colors of the neighbors are in R ∪ {`, r} as well.

Algorithm 4 “(6, `, r)-Coloring” Phase - Final Version

1: send cv to both neighbors
2: while cv /∈ R ∪ {`, r} do
3: if c` ∈ R then
4: cv := `;
5: else if cr ∈ R then
6: cv := r;
7: else if c` = ` then
8: cv = new color(arbitrary color, cv) (“root”)
9: else

10: cv = new color(c`, cv)
11: send cv to both neighbors
12: wait until both neighbors’ colors are in R∪ {`, r}

At this point, the nodes can reduce the colors from R∪ {`, r} to {0, 1, 2}.

From 6+ 2 colors to 3 colors

Algorithm 5 presents the intuitive shape the Reduction phase. Note that since every node
has two neighbors, every node can obtain an admissible color in {0, 1, 2}. There is still a
question left: When is it my turn() to pick a color in {0, 1, 2}?
It is possible that a node and its neighbors start the reduction phase at different rounds. If
we simply iterate through the colors (e.g. nodes with color ` go first, then nodes with color
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Algorithm 5 Reduction Phase

1: while cv /∈ {0, 1, 2} do
2: if my turn() then
3: choose smallest available color cv ∈ {0, 1, 2}
4: send cv to both neighbors

r, afterwards nodes with color 5 etc.), a node and its neighbor, although they end up with
different colors in the first phase, they might choose a color in {0, 1, 2} at the same time.
They might even choose the same color! To ensure this does not happen, we will use the
round number: since the nodes operate synchronously, they have the same round number at
any time, even if they are in different phases of the algorithm. We will define the subroutine
my turn() as follows.

Algorithm 6 my turn(round number, cv)

1: x := (round number mod 5) + 3;
2: if (cv = x) then
3: return true

4: else if x = 6 and cv = l then
5: return true

6: else if x = 7 and cv = r then
7: return true

8: else
9: return false

Putting it all together

Algorithm 7, presented below, is the final solution.

To summarize, we use two additional colors, ` and r, to solve the termination problem.
Furthermore, we let each node send its color to both neighbors between each round of the
log-star algorithm. This way, each node always knows the colors of both neighbors at the
beginning of a round of the log-star algorithm (“6-color”).

The algorithm works as follows for a node v: As long as neither v nor one of its neighbors
has a color in R ∪ {`, r}, it executes Algorithm “6-color”. If v learns that the color of its
left neighbor is in R (regardless of the color of the right neighbor), and v’s color is not in
R, then v recolors itself with the color ` and waits until both its neighbors have a color in
R ∪ {`, r}. If a node v learns that the color of its right neighbor is in R, while the color of
its left neighbor and its own color are both not in R, then v recolors itself with the color r
and waits until both its neighbors have a color in R∪{`, r}. Additionally, as a node v to the
right of a node colored ` no longer receives new colors, we need the rule that v simply takes
an arbitrary color c ∈ R as the new color of its parent and computes its new color based on
c and its own color in each round.

Inside the first while-loop, v eventually reaches a color in R ∪ {`, r}. After that, node v
waits until its neighbors have also acquired a color in this range in order to start the color
reduction phase. In each round of the color reduction phase, one color of {3, 4, 5, `, r} is
replaced by a legal color in {0, 1, 2}. As all nodes know the absolute number of rounds that
have passed so far, this can be done without interference.
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Algorithm 7 Synchronous “3”-Coloring on Ring

1: send cv to both neighbors
2: while cv /∈ R ∪ {`, r} do
3: if c` ∈ R then
4: cv := `;
5: else if cr ∈ R then
6: cv := r;
7: else if c` = ` then
8: cv = new color(arbitrary color, cv) (“root”)
9: else

10: cv = new color(c`, cv)
11: send cv to both neighbors
12: wait until both neighbors’ colors are in R∪ {`, r}
13: while cv /∈ {0, 1, 2} do
14: if my turn(round number, cv) then
15: choose smallest available color cv ∈ {0, 1, 2}
16: send cv to both neighbors

new color(c`, cv)

1: interpret c` and cv as bit-strings
2: let i be the index of the rightmost bit b where cv and c` differ
3: return cv = 2i + b

my turn(round number, cv)

1: x := (round number mod 5) + 3;
2: return (cv = x) or (x = 6 and cv = l) or (x = 7 and cv = r)
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