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Example

Video taken from Caron et al. 2021





Related work

Comparison:

e Do Vision Transformers See Like Convolutional Neural Networks?, Raghu et al.
2021

e Transformers in vision: A survey, Khan et al. 2021
Improving ViTs:

e Training data-efficient image transformers & distillation through attention,
Touvron et al. 2021

e Swin Transformer: Hierarchical Vision Transformer using Shifted Windows,
Ze Liu et al. 2021

e Cvt: Introducing convolutions to vision transformers, Wu et al. 2021
Attention for CNNs:

e A ConvNet for the 2020s, Zhuang Liu et al. 2022
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Motivation and Tasks



e Direct user interaction
e Easier dataset collection

e Discrete categories are to strict



Image Captioning

Visual Question Answering

Natural Language for Visual Reasoning

Image Text Retrieval



Image Captioning

A young boy is playing
basketball.

Two dogs play in the
grass.

A dog swims in the
water.

A little girl in a pink shirt
is swinging.
N

A group of women
dressed in formal attire.

Two children play in the
water.

A dog jumps over a
hurdle.

Figure taken from Hodosh, Young, and Hockenmaier 2013




Visual Question Answering

What color are her eyes? How many slices of pizza are there?
What is the mustache made of? Is this a vegetarian pizza?

Does it appear to be rainy?
Does this person have 20/20 vision?
Figure taken from Antol et al. 2015

Is this person expecting company?
What is just under the tree?



Natural Language for Visual Reasoning

The left image contains twice the number of dogs as the
right image, and at least two dogs in total are standing.

One image shows exactly two brown acorns in
back-to-back caps on green foliage.

Figure taken from Suhr et al. 2018



Image Text
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Figure taken from Hua, Yang, and Du 2020




How do multi-modal models work?

Visual-semantic space

text images
3¢ matching pairs 3 non-matching pairs

Figure taken from Cornia et al. 2018
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CLIP



CLIP training
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Figure taken from Radford et al. 2021
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CLIP training
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Figure taken from Radford et al. 2021
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CLIP training
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CLIP training
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Figure taken from Radford et al. 2021
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CLIP training

Pepper the
aussie pup Er;rc.;x(;er
Image
Encoder

w || || Ty

— > el 1,7, | 1,Ts 0 8
—_—

Ll L |l LT [T | LT, LTy

> I3 3Ty | 13Ty | 3Ty I3 Ty

—> Iy INTy | INT2 | INT3 INTN
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CLIP training
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Figure taken from Radford et al. 2021
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inference

plane

Figure taken from Radford et al. 2021
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inference

plane

A photo of
a {object}.

Figure taken from Radford et al. 2021
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inference
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Figure taken from Radford et al. 2021
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CLIP inference
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CLIP inference
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Figure taken from Radford et al. 2021
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CLIP inference
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A photo of
a dog.

Figure taken from Radford et al. 2021
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(1) Contrastive pre-training (2) Create dataset classifier from label text
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Figure taken from Radford et al. 2021

24



CLIP robustness
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CLIP! prompt engineering
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CLIP limitations

Zero-shot performance is well below the SOTA

Especially weak on abstract tasks such as counting

Poor on out-of-distribution data such as MNIST

Susceptible to adversarial attacks
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CLIP typographic attacks

library 0.0% library 0.0%
pizza 0.0% pizza 0.0%
toaster 0.0% toaster 0.0%
dough 0.1% dough 0.0%
Standard Poodle 39.3% piggy bank 52.5%
Angora rabbit 16.0% Standard Poodle 23.8%
Standard Schnauzer 3.6% Miniature Poodle 2.3%
0Old English Sheepdog 3.3% Pyrenean Mountain Dog 1.1%
Komondor 2.8% military cap 0.7%
Bedlington Terrier 2.8% Chow Chow 0.7%

Figure taken from Goh et al. 2021
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Figure taken from Zhou et al. 2022
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Better representations
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ViLT
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Figure taken from W. Kim, Son, and I|. Kim 2021 30
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Image Text Matching
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Masked Language Modelmg
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Image Text Malchmg Masked Language Modeling ‘Word Patch Alignment

Transformer Encoder

QO Em—p—
O Modal-type embedding

444*44 —

Word Embedding Lmear Projection of Flattened Patches

| T | B s
a stone statue near an [MASK] & ad - - 4—..

Figure taken from W. Kim, Son, and |. Kim 2021

39



Visual Model Time  VQAv2 NLVR2
Embed ode (ms) test-dev dev test-P
w/o VLP SOTA ~900 70.63 54.80 53.50
ViLBERT ~920 70.55 - -
Visual BERT ~925 70.80 67.40 67.00
Region LXMERT ~900 72.42 7490 74.50
UNITER-Base ~900 72.70 75.85  75.80
OSCAR-Basef ~900 73.16 78.07  78.36
VinVL-Basef# ~650 75.95 82.05 83.08
Grid Pixel-BERT-X152  ~160 74.45 76.50  77.20
Pixel-BERT-R50 ~60 71.35 7170  72.40
ViLT-B/32 ~15 70.33 7441 74.57
Linear  ViLT-B/32® ~15 70.85 7491  75.57

VILT-B/32@® ~15 71.26 75770  76.13

Results from W. Kim, Son, and I. Kim 2021
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Zero-Shot Text Retrieval

Zero-Shot Image Retrieval

Visual  Model "('i"‘e) Flickr30k (1K) MSCOCO (5K) Flickr30k (1K) MSCOCO (5K)
mbe ms, @l R@5 R@I0 R@I R@5 R@I0 R@l R@5S R@I0 R@l R@5 R@I0
VILBERT 900 - - - - - - 319 6Ll 728 - - -
Region  Unicoder-VL  ~025 643 858 923 - - - 484 760 852 - - -
& UNITER-Base  ~900 807 957 980 - - - 662 884 929 - - -
ImageBERT?  ~925 707 902 940 440 712 804 543 796 875 323 590 702
Linear  VILT-B/32 -15 697 910 960 534 807 888 513 799 879 373 674 790
VILT-B/32® ~15 732 936 965 565 826 89.6 550 825 89.8 404 700 8Ll

Results from W. Kim, Son, and |. Kim 2021
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Multi-modal embedding losses
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Task specific models

Image taken from Ramesh et al. 2022
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Thank you for your attention
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