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IMAGE

Happy families are all alike; every unhappy family is unhappy in its
own way.
Everything was in confusion in the Oblonskys’ house. The wife had
discovered that the husband was carrying on an intrigue with a
French girl…
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Illustrations taken from https://copilot.github.com/
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Problem statement

Code solution

Illustrations taken from https://www.deepmind.com/blog/competitive-programming-with-alphacode
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Motivation - Tasks

• Code generation

• Code search

• Code summarization

• Duplication detection

• Bug & vulnerability detection

• Programming language translation
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BERT Architecture

• Training
• 1) pre-training (masked LM + next 

sentence prediction)

• 2) fine-tuning – task specific

• Advancement: RoBERTa
• more data

• better train strategy (bigger 
batches, longer)

• pre-training: only MLM 
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BERT Architecture

• Training
• 1) pre-training (masked LM + next 

sentence prediction)

• 2) fine-tuning – task specific

• Advancement: RoBERTa
• more data

• better train strategy (bigger 
batches, longer)

• pre-training: only MLM 
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fine-tuning example:
sentence-pair classification

BERT

CLS

sentence1 sentence2

SEPshe opened the hood of the car, then, she examined the engine

CLS

Entailment: 0.20
Contradiction: 0.05

Neutral: 0.75



RoBERTa on Code?
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RoBERTa

CLS

sentence1 sentence2

SEPshe opened the hood of the car,

RoBERTa

CLS

text code

SEPreturn maximum value if a > b: return a …

then, she examined the engine



RoBERTa on Code?
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CodeBERT (Feng et al., 2020)

• Architecture: RoBERTa

• Data: Code from public GitHub repos 
• 6 programming languages (CodeSearchNet dataset)

• Pre-training data: 
• NL (documentation) + PL (function code) pairs

• Pre-training tasks:
• 1) Masked Language Modelling
• 2) Replaced Token Detection
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CodeBERT
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CodeBERT – Replaced Token Detection

NL and code generator – simple n-gram language model

Figure taken from Feng et al., 2020
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CodeBERT – Fine-Tuning (Code Search)
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CodeBERT

CLS

text code

SEPreturn maximum value if a > b: return a …

similarity score Code search task

• Output: similarity score [0, 1]

• Data: CodeSearchNet corpus
• Code + docstring pairs

• Balanced positive and 
negative samples
• Negative sample – replace 

docstring or code



GraphCodeBERT (Guo et al., 2021)
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GraphCodeBERT
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SEPreturn maximum value if a > b: return a … SEP
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GraphCodeBERT - Data Flow
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𝑉 = 𝑎, 𝑏, 𝑥1, 𝑥2, 𝑥3, 𝑦
𝐸 = { 𝑎, 𝑥1 , 𝑏, 𝑥1 , 𝑥1, 𝑥2 , 𝑥1, 𝑥3 , (𝑥3, 𝑦)}
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GraphCodeBERT - Attention
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Attention (dot-product): 𝑞𝑖 ⋅ 𝑘𝑗

i

j

Attention scores:

𝛼 = softmax(
𝑄 ⋅ 𝐾

𝑑
)

𝛼 = softmax(
𝑄 ⋅ 𝐾

𝑑
+𝑀)

text
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Allow data flow token attention only with:
1. Code token that correspond to it
2. Data flow token with edge in relation graph
3. [CLS], [SEP]

𝑀𝑖𝑗

𝑀𝑖𝑗 = 0 or − ∞



GraphCodeBERT (Guo et al., 2021)

• Pre-training tasks:
• 1) Masked Language Modeling

• Data flow tokens are never masked

• 2) Edge Prediction

• 3) Node Alignment
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GraphCodeBERT – Edge Prediction

• Edge Prediction
• Learn to predict edges in data flow (where the value comes from)

• Procedure:
• Randomly select data flow tokens

• Mask them in attention

• Let the model predict them (product = 1 if exists or 0 otherwise)
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GraphCodeBERT – Node Alignment

• Node Alignment
• Learn to predict edges between code tokens and data flow tokens

• Procedure:
• Randomly select data flow and code token pairs

• Mask them in attention

• Let the model predict them (product = 1 if exists or 0 otherwise)
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SynCoBERT (Wang et al., 2021)

• Pre-training tasks:
• 1) (multi-modal) masked LM

• AST tokens can also be masked

• 2) identifier prediction
• Predict whether a token is identifier

• 3) AST edge prediction
• Predict masked edges in AST

• 4) (multi-modal) contrastive learning
• Solve imbalance problems (high-frequency 

tokens)

• Positive and negative samples

Figure taken from Wang et al., 2021 19



Tasks – Natural Language Code Search

• From a collection, find the most semantically related 
code given NL description

• Dataset: CodeSearchNet

• Metric: MRR (Mean Reciprocal Rank)

• 999 distractors

• MRR=
1

𝑄
σ𝑖=1
𝑄 1

ranki
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Tasks - Code Clone Detection
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• Detect whether 2 code fragments output same 
result when given the same input

• Dataset: BigCloneBench
• Pairs of code -> clone / not clone (binary)

• Metric: F1 score

CodeBERT

code

if a > b: return a …

v1

CLS

CodeBERT

code

if a > b: return a …

v2

CLS



Tasks - Code Defect Detection 
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• Detect whether there are defects in the code 
fragment (binary)

• Dataset: Defects4J (C language)

• Metric: accuracy 

CodeBERT

code

if a > b: return a …

v1

CLS



Tasks - Program Translation
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• Translate the code from one to another 
language

• Dataset: C# -> Java

• Metric: BLEU (CodeBLEU) 

CodeBERT

code

if a > b: return a …CLS

Decoder

if (a > b) {…



AlphaCode

• A model that solves 
competitive programming 
problems

• Data:
• Pre-training: public repos 

from GitHub

• Fine-tuning: CodeContests
– task and solution pairs 
(including incorrect ones) 
from codeforces

Figure taken from Li et al., 2022
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AlphaCode

• Architecture: encoder-
decoder transformer
• problem statement -> 

solution code pair

• like for natural language 
translation

• no syntax info

• 41B parameters
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AlphaCode

• Evaluation:
• Generate many samples 

(C++ & python) -> 100k

• Filter based on whether 
the generated solution 
passes simple tests

• From a separate model 
generate new tests and 
cluster candidates

• Select 10 samples
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Figure taken from Li et al., 2022



AlphaCode

• Result
• Within top 54% contestants based on sampled solutions

• Limitations and problems
• More syntactically correct Python than C++ samples -> syntax understanding?

• Lack of understanding complex ideas: 
• Better at problems with bitmaps, sorting, greedy

• Worse at DP problems

• Generating many samples (100k)
• During sampling, a random tag (DP, binary search, …) is added

• Just generating all possible solutions with different algorithms?
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AlphaCode
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Chess – DeepBlue vs Garry Kasparov

Figure taken from https://en.wikipedia.org/wiki/Deep_Blue_versus_Garry_Kasparov



OpenAI Codex

• Model used for Github Copilot

• Architecture: based on GPT (12B) + modified text tokenization (?)

• Data: Python code from Github public repos

• pass@k evaluation (like AlphaCode)

• Experiments
• Hand-crafted evaluation set (NL and PL pairs)

• Additional fine-tuning on correct code (competitive programming + CI)
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OpenAI Codex
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OpenAI Codex - Problems
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Conclusion

• Models for textual data can also be used for code (with slight 
modifications)

• Efficient program representation
• Improves results

• More in the following presentation!

• Training a huge model with billions of parameters produces amazing 
results – advancement, fairness?
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Thank you for your attention!
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