
Distributed
 Computing

FS 2023 Prof. R. Wattenhofer

Principles of Distributed Computing

Exercise 12: Sample Solution

1 Flow labeling schemes

Question 1 Check that Rk is reflexive, symmetric and transitive.

• reflexive: flow(x, x) = ∞

• symmetric: the graph is undirected, flow(x, y) = flow(y, x)

• transitive: consider a path p = (v1, v2, . . . , vmp
) from x to y in which v1 = x and vmp

= y
and a path p′ = (v′1, v

′
2, . . . , v

′
mp′

) from y to z in which v′1 = y and v′mp′
= z. Let i be the

largest subscript in p′ such that v′i ∈ p. It is easy to check there is a path x−−v′i−−z where
x−−v′i is a part of p and v′i −−z is a part of p′.

Ck+1 is a refinement of Ck.

Question 2

a) Add the depth of each vertex into the label. The depth of the tree is smaller than m, so
the added part is of size O(logm). From the depth of two vertices and the distance between
them, SepLevel can be computed.

b) Note that
flowG(v, w) = SepLevelT (t(v), t(w)). (1)

The depth of TG cannot exceed nω̂ and every level at most has n nodes, hence the total
number of nodes in TG is O(n2ω̂).

Question 3 Cancel all nodes of degree 2 in TG, and add appropriate edge weights (T̃G).
Now, define SepLevelT (x, y) as the weighted depth of z = lca(x, y), i.e. its weighted distance

from the root. Obtain the SepLevel labeling scheme for weighted trees in the same way as in
question 2. For ñ-node trees with maximum weight ω̃, the labeling size is O(log ñ log ω̃+log2 ñ)+
O(log(ñω̃)) = O(log ñ log ω̃ + log2 ñ).

Again, for two nodes x, y in G, the weighted separation level of the leaves t(x) and t(y)
associated with x and y in the tree T̃G is related to the flow between the two vertices as in Eq.
(1).

Finally, note that as T̃G has exactly n leaves, and every non-leaf node in it has at least two
children, the total number of nodes in T̃G is ñ ≤ 2n − 1. The maximum edge weight in T̃G is
ω̃ ≤ nω̂. We end up with the label size of O(log ñ log ω̃ + log2 ñ).

For more details, see [1] (Section 2).

2 Labeling Games

Question 1 Alice can encode the whole neighborhood of each vertex in the label. There are at
most 1000 vertices and the ID of the current vertex v is also given. She can encode the i-th bit of lv
as 1 if the node with ID i is connected to v and 0 otherwise. Bob can then execute a graph traver-
sal algorithm of his choosing to visit each node. Furthermore, they win all of the 2000 gummybears!

Question 2 Let T be a star graph with center r and π be any ordering of the vertices of T
without r. Note that with 20 bits we can encode 2 numbers up to 1023 using 10 bits each. Alice
can use the following scheme: For each vertex v she encodes the ID of r as the first number. As
the second number she encodes the ID of vertex u following v in π. At vertex r she encodes the
ID of the first vertex in π.

Assume Bob starts at r. If not, his first move will be to travel to r (ID of r is saved at every
vertex). Then Bob can traverse all vertices by following the ordering of π. At r the first vertex
x of π is given and he can take the direct edge to it. At x the next vertex y of π is encoded. He
can visit y by going back to r and then taking the edge to y. He repeats this procedure until all
vertices have been visited. Afterwards, he can share all 2000 gummybears with Alice!

Question 3 Let T be any graph with at most 1000 vertices. We can use a similar idea as
in Question 2, but have to be a bit more careful with traversing through the graph. Pick any
arbitrary vertex r and root the tree at r. Furthermore, let π be a preorder tree traversal of the
vertices. Recall that we can encode 2 node IDs using 20 bits. At every vertex v we encode the
parent of v as the first ID. The second ID will be the ID of vertex u that is after v in π. Therefore,
we can decompose lv = (parent(v), next(v, π)).

Assume Bob starts at r. If not, his first few moves will be to travel to r. Note that Bob can
recognize if he is located at r as he gets idv and lv upon visiting a node v. If he is located at the
root, idv will match the first ID encoded in lv. To get to the root, he always goes to parent(v),
the edge towards the parent of the node he currently resides at. Then he can start visiting the
nodes (roughly) in the order of π. Upon arriving at a vertex v, he will try to visit next(v, π). This
will succeed, unless v is a leaf. If v is a leaf, then our request fails and we loose one gummybear.
However, because π was constructed as a preorder tree traversal, we now that next(v, π) must be
connected to one of the ancestors a of v. Furthermore, the whole subtree of a containing v has
already been visited. Therefore, we can go back to parent(v) and try to visit next(v, π) there. We
have to repeat this procedure until we reach a, loosing a gummybear for each failed request until
we reach a.

Following these rules, Bob looses one gummybear at every vertex except the root (there is no
other ancestor a) and the very last vertex (because he wins the game). Therefore, Alice and Bob
can win at least 1002 gummybears!

Question 4 The solution is almost the same as in Question 2. However, we have to be a bit
more clever in the beginning. We again root the tree at r and get a preorder traversal π. Instead
of assigning the label lv = (parent(v), next(v, π)) we assign the bitwise XOR of both IDs and get
the label lv = parent(v) ⊕ next(v, π). As the starting set S we choose r and the first node of π.
Assume Bob starts at r. In this case he can execute the same steps mentioned in Question 3. To
get the label next(v, π) he just has to xor lv with parent(v) (which is known because he visits the
tree in the same preorder traversal) to get next(v, π). Now assume we start in x ̸= r. We know
that we start in one of r’s children. We can try all possible IDs from 1 to 1000 as the possible
value of the ID of r. It could happen that we end up in y = next(x, π) instead of r. However, to
distinguish between the two cases, we can xor y with idx. If we are in the root, then idy will be
equal to y ⊕ idx = idr ⊕ next(r, π) ⊕ idx = idr. Otherwise, we can go back to x and go directly
to the root r by computing idr = lx ⊕ y = parent(x). Note that we can have at most 998 wrong
requests before getting a valid transition to another node. In the end we are left with at least 4
gummybears to share between Alice and Bob.

2

References

[1] Katz, Michal, et al., Labeling schemes for flow and connectivity, SIAM Journal on Computing
34.1 (2004): 23-40.

3

