Chapter 7

Shared Objects

Assume that there is a common resource (e.g. a common variable or data struc-
ture), which different nodes in a network need to access from time to time. If
the nodes are allowed to change the common object when accessing it, we need
to guarantee that no two nodes have access to the object at the same time. In
order to achieve this mutual exclusion, we need protocols that allow the nodes
of a network to store and manage access to such a shared object.

7.1 Centralized Solutions

A simple and obvious solution is to store the shared object at a central location
(see Algorithm 7.1).

Algorithm 7.1 Shared Object: Centralized Solution
Initialization: Shared object stored at root node r of a spanning tree of the
network graph (i.e., each node knows its parent in the spanning tree).
Accessing Object: (by node v)
1: v sends request up the tree
2: request processed by root r (atomically)
3: result sent down the tree to node v

Remarks:
e Instead of a spanning tree, one can use routing.

e Algorithm 7.1 works, but it is not very efficient. Assume that the
object is accessed by a single node v repeatedly. Then we get a high
message/time complexity. Instead v could store the object, or at least
cache it. But then, in case another node w accesses the object, we
might run into consistency problems.

Alternative idea: The accessing node should become the new master
of the object. The shared object then becomes mobile. There exist
several variants of this idea. The simplest version is a home-based
solution like in Mobile IP (see Algorithm 7.2).
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Algorithm 7.2 Shared Object: Home-Based Solution

Initialization: An object has a home base (a node) that is known to every
node. All requests (accesses to the shared object) are routed through the
home base.

Accessing Object: (by node v)

1: v acquires a lock at the home base, receives object.

Remarks:

e Home-based solutions suffer from the triangular routing problem. If
two close-by nodes take turns to access the object, all the traffic is
routed through the potentially far away home-base.

7.2 Arrow and Friends

We will now look at a protocol (called the Arrow algorithm) that always
moves the shared object to the node currently accessing it without creating
the triangular routing problem of home-based solutions. The protocol runs on
a precomputed spanning tree. Assume that the spanning tree is rooted at the
current position of the shared object. When a node u wants to access the shared
object, it sends out a find request towards the current position of the object.
While searching for the object, the edges of the spanning tree are redirected
such that in the end, the spanning tree is rooted at u (i.e., the new holder of the
object). The details of the algorithm are given by Algorithm 7.3. For simplicity,
we assume that a node u only starts a find request if « is not currently the holder
of the shared object and if u has finished all previous find requests (i.e., it is
not currently waiting to receive the object).

Remarks:

e The parent pointers in Algorithm 7.3 are only needed for the find
operation. Sending the variable to w in line 13 or to w.successor in
line 23 is done using routing (on the spanning tree or on the underlying
network).

When we draw the parent pointers as arrows, in a quiescent moment
(where no “find” is in motion), the arrows all point towards the node
currently holding the variable (i.e., the tree is rooted at the node
holding the variable)

What is really great about the Arrow algorithm is that it works in
a completely asynchronous and concurrent setting (i.e., there can be
many find requests at the same time).

Theorem 7.4. (Arrow, Analysis) In an asynchronous and concurrent setting,
a “find” operation terminates with message and time complexity D, where D is
the diameter of the spanning tree.
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Algorithm 7.3 Shared Object: Arrow Algorithm

Initialization: As for Algorithm 7.1, we are given a rooted spanning tree. Each
node has a pointer to its parent, the root r is its own parent. The variable
is initially stored at r. For all nodes v, v.successor := null, v.wait := false.

Start Find Request at Node wu:
1: do atomically
2 u sends “find by u” message to parent node
3:  w.parent :=u
4 u.wait := true
5. end do

Upon w Receiving “Find by u” Message from Node v:
6: do atomically
7. if w.parent # w then

8: w sends “find by u” message to parent

9: w.parent := v

10:  else

11: w.parent := v

12: if not w.wait then

13: send variable to u // w holds var. but does not need it any more
14: else

15: W.SUCCESSOTr := U // w will send variable to u a.s.a.p.
16: end if

17:  end if

18: end do

Upon w Receiving Shared Object:
19: perform operation on shared object
20: do atomically

21:  w.wait := false

22:  if w.successor # null then

23: send variable to w.successor
24: w.successor := null

25:  end if

26: end do
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Before proving Theorem 7.4, we prove the following lemma.
Lemma 7.5. An edge {u,v} of the spanning tree is in one of four states:

1.) Pointer from u to v (no message on the edge, no pointer from v to u)
2.) Message on the move from u to v (no pointer along the edge)
3.) Pointer from v to u (no message on the edge, no pointer from u to v)
4.) Message on the move from v to u (no pointer along the edge)

Proof. W.lo.g., assume that initially the edge {u,v} is in state 1. With a
message arrival at u (or if u starts a “find by u” request), the edge goes to state
2. When the message is received at v, v directs its pointer to u and we are
therefore in state 3. A new message at v (or a new request initiated by v) then
brings the edge back to state 1.

Proof of Theorem 7.4. Since the “find” message will only travel on a static tree,
it suffices to show that it will not traverse an edge twice. Suppose for the sake
of contradiction that there is a first “find” message f that traverses an edge
e = {u,v} for the second time and assume that e is the first edge that is
traversed twice by f. The first time, f traverses e. Assume that e is first
traversed from u to v. Since we are on a tree, the second time, e must be
traversed from v to u. Because e is the first edge to be traversed twice, f must
re-visit e before visiting any other edges. Right before f reaches v, the edge e
is in state 2 (f is on the move) and in state 3 (it will immediately return with
the pointer from v to ). This is a contradiction to Lemma 7.5. O

Remarks:

e Finding a good tree is an interesting problem. We would like to have
a tree with low stretch, low diameter, low degree, etc.

e It seems that the Arrow algorithm works especially well when lots of
“find” operations are initiated concurrently. Most of them will find a
“close-by” node, thus having low message/time complexity. For the
sake of simplicity we analyze a synchronous system.

Theorem 7.6. (Arrow, Concurrent Analysis) Let the system be synchronous.
Initially, the system is in a quiescent state. At time 0, a set S of nodes initiates
a “find” operation. The message complezity of all “find” operations is O(log |S|-
m*) where m* is the message complezity of an optimal (with global knowledge)
algorithm on the tree.

Proof Sketch. Let d be the minimum distance of any node in S to the root.
There will be a node u; at distance d from the root that reaches the root in
d time steps, turning all the arrows on the path to the root towards u;. A
node uy that finds (is queued behind) u; cannot distinguish the system from
a system where there was no request u;, and instead the root was initially
located at u;. The message cost of ug is consequentially the distance between
uy and uz on the spanning tree. By induction the total message complexity is
exactly as if a collector starts at the root and then “greedily” collects tokens
located at the nodes in S (greedily in the sense that the collector always goes
towards the closest token). Greedy collecting the tokens is not a good strategy
in general because it will traverse the same edge more than twice in the worst



7.2. ARROW AND FRIENDS 27

case. An asymptotically optimal algorithm can also be translated into a depth-
first-search collecting paradigm, traversing each edge at most twice. In another
area of computer science, we would call the Arrow algorithm a nearest-neighbor
TSP heuristic (without returning to the start/root though), and the optimal
algorithm TSP-optimal. It was shown that nearest-neighbor has a logarithmic
overhead, which concludes the proof. O

Remarks:

e An average request set S on a not-too-bad tree gives usually a much
better bound. However, there is an almost tight log|S|/loglog|S|
worst-case example.

It was recently shown that Arrow can do as good in a dynamic setting
(where nodes are allowed to initiate requests at any time). In partic-
ular the message complexity of the dynamic analysis can be shown to
have a log D overhead only, where D is the diameter of the spanning
tree (note that for logarithmic trees, the overhead becomes loglogn).

What if the spanning tree is a star? Then with Theorem 7.4, each find
will terminate in 2 steps! Since also an optimal algorithm has message
cost 1, the algorithm is 2-competitive...? Yes, but because of its high
degree the star center experiences contention. It can be shown that
the contention overhead is at most proportional to the largest degree
A of the spanning tree, but in a star the degree is linear in the number
of nodes.

Thought experiment: Assume a balanced binary spanning tree—by
Theorem 7.4, the message complexity per operation is 2log n. Because
a binary tree has maximum degree 3, the contention is at most 3.

There are better and worse choices for the spanning tree. The stretch
of an edge {u,v} is defined as distance between u and v in a spanning
tree. The maximum stretch of a spanning tree is the maximum stretch
over all edges. It was shown how to construct spanning trees that are
O(log n)-stretch-competitive.

What if most nodes just want to read the shared object? Then it does
not make sense to acquire a lock every time. Instead we can use caching (see
Algorithm 7.7).

Theorem 7.8. Algorithm 7.7 is correct. More surprisingly, the message com-
plexity is 3-competitive (at most a factor 3 worse than the optimum,).

Proof. Since the accesses do not overlap by definition, it suffices to show that
between two writes, we are 3-competitive. The sequence of accessing nodes is
wo, T1, T2, .., Tk, wi. After wp, the object is stored at wp and not cached
anywhere else. All reads cost twice the smallest subtree T spanning the write
wp and all the reads since each read only goes to the first copy. The write w;
costs T plus the path P from w; to T. Since any data management scheme
must use an edge in 7" and P at least once, and our algorithm uses edges in T'
at most 3 times (and in P at most once), the theorem follows. O
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Algorithm 7.7 Shared Object: Read/Write Caching

e Nodes can either read or write the shared object. For simplicity we first
assume that reads or writes do not overlap in time (access to the object is
sequential).

Nodes store three items: a parent pointer pointing to one of the neighbors
(as with Arrow), and a cache bit for each edge, plus (potentially) a copy of
the object.

Initially the object is stored at a single node u; all the parent pointers point
towards u, all the cache bits are false.

When initiating a read, a message follows the arrows (this time: without
inverting them!) until it reaches a cached version of the object. Then a copy
of the object is cached along the path back to the initiating node, and the
cache bits on the visited edges are set to true.

A write at u writes the new value locally (at node u), then searches (follow the
parent pointers and reverse them towards u) a first node with a copy. Delete
the copy and follow (in parallel, by flooding) all edge that have the cache flag
set. Point the parent pointer towards u, and remove the cache flags.

Remarks:

e Concurrent reads are not a problem, also multiple concurrent reads
and one write work just fine.

What about concurrent writes? To achieve consistency writes need to
invalidate the caches before writing their value. It is claimed that the
strategy then becomes 4-competitive.

Is the algorithm also time competitive? Well, not really: The optimal
algorithm that we compare to is usually offline. This means it knows
the whole access sequence in advance. It can then cache the object
before the request even appears!

Algorithms on trees are often simpler, but have the disadvantage that
they introduce the extra stretch factor. In a ring, for example, any
tree has stretch n — 1; so there is always a bad request pattern.
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Algorithm 7.9 Shared Object: Pointer Forwarding
Initialization: Object is stored at root r of a precomputed spanning tree T (as
in the Arrow algorithm, each node has a parent pointer pointing towards
the object).
Accessing Object: (by node u)
1: follow parent pointers to current root r of T'
2: send object from 7 to u
3: r.parent := u; u.parent := u; // w is the new root

Algorithm 7.10 Shared Object: Ivy
Initialization: Object is stored at root r of a precomputed spanning tree T
(as before, each node has a parent pointer pointing towards the object). For
simplicity, we assume that accesses to the object are sequential.
Start Find Request at Node wu:
1: u sends “find by u” message to parent node
2: w.parent := u
Upon v receiving “Find by u” Message:

3. if v.parent = v then

4:  send object to u

5. else

6:  send “find by u” message to v.parent

7: end if

8: v.parent :=u // w will become the new root

7.3 Ivy and Friends

In the following we study algorithms that do not restrict communication to a
tree. Of particular interest is the special case of a complete graph (clique). A
simple solution for this case is given by Algorithm 7.9.

Remarks:
e If the graph is not complete, routing can be used to find the root.

e Assume that the nodes line up in a linked list. If we always choose the
first node of the linked list to acquire the object, we have message/time
complexity n. The new topology is again a linear linked list. Pointer
forwarding is therefore bad in a worst-case.

If edges are not FIFO, it can even happen that the number of steps
is unbounded for a node having bad luck. An algorithm with such a
property is named “not fair,” or “not wait-free.” (Example: Initially
we have the list 4 —+ 3 — 2 — 1; 4 starts a find; when the message
of 4 passes 3, 3 itself starts a find. The message of 3 may arrive at 2
and then 1 earlier, thus the new end of the list is 2 — 1 — 3; once the
message of 4 passes 2, the game re-starts.)

There seems to be a natural improvement of the pointer forwarding idea.
Instead of simply redirecting the parent pointer from the old root to the new
root, we can redirect all the parent pointers of the nodes on the path visited
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Figure 7.11: Reversal of the path zg, 1, z2, 3, x4, T5.

during a find message to the new root. The details are given by Algorithm 7.10.
Figure 7.11 shows how the pointer redirecting affects a given tree (the right tree
results from a find request started at node z on the left tree).

Remarks:

e Also with Algorithm 7.10, we might have a bad linked list situation.
However, if the start of the list acquires the object, the linked list
turns into a star. As the following theorem shows, the search paths
are not long on average. Since paths sometimes can be bad, we will
need amortized analysis.

Theorem 7.12. If the initial tree is a star, a find request of Algorithm 7.10
needs at most logn steps on average, where n is the number of processors.

Proof. All logarithms in the following proof are to base 2. We assume that
accesses to the shared object are sequential. We use a potential function argu-
ment. Let s(u) be the size of the subtree rooted at node u (the number of nodes
in the subtree including u itself). We define the potential ® of the whole tree
T as (V is the set of all nodes)

o(T) = Z logs(u)‘

2
uev

Assume that the path traversed by the i"* operation has length k;, i.e., the i*"

operation redirects k; pointers to the new root. Clearly, the number of steps
of the i*" operation is proportional to k;. We are interested in the cost of m
consecutive operations, Y1, k;.

Let Ty be the initial tree and let T; be the tree after the i operation.
Further, let a; = k; — ®(T;_1) +®(T;) be the amortized cost of the i*" operation.
‘We have

m m m

Stai=>" (ki —(Ti0) + O(T3) =Y ki — B(Tp) + (Th).

i=1 i=1 i=1
For any tree T, we have ®(T") > log(n)/2. Because we assume that T is a star,
we also have ®(Tp) = log(n)/2. We therefore get that

m m
Sz 3ok
i=1 i=1
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Hence, it suffices to upper bound the amortized cost of every operation. We
thus analyze the amortized cost a; of the i** operation. Let zg,21,%2,..., Tk,
be the path that is reversed by the operation. Further for 0 < j < k;, let s; be
the size of the subtree rooted at x; before the reversal. The size of the subtree
rooted at xg after the reversal is s;, and the size of the one rooted at x; after the
reversal, for 1 < j < k;, is s; — sj_1 (see Figure 7.11). For all other nodes, the
sizes of their subtrees are the same, therefore the corresponding terms cancel
out in the ammortized cost a;. We can thus write a; as

1
a; = ki— 2510535.1 + logs;C +Z log(s; —sj-1)
=0 Jj=1
] Rl
= k,i+§-zo(log(s*ﬁ1 s;) — logs;)
=

ki—1

1 Sj41 — S
- k& 72: J+ AN
2. log< 5j )
j=0 J

For 0 < j < k;—1, let oj = sj41/s;. Note that s;41 > s; and thus that a; > 1.
Further note, that (s;j;1 — s;)/s; = a; — 1. We therefore have that

ki—1
a = ki +7 Zlog
ki—1 1
— Z (1 + §log(a] - 1)) .
Jj=0

For o > 1, it can be shown that 1 + log(ow — 1)/2 < log v (see Lemma 7.13).
From this inequality, we obtain

ki—1 ki—1 ki—1
a; < Z log o = Z Iog 91“ = Z (log sj11 — log s;)
Jj=0
= log sk, — log sg S logn,
because s, = n and sg > 1. This concludes the proof. O

Lemma 7.13. For a > 1, 1+log(e —1)/2 <loga.

Proof. The claim can be verified by the following chain of reasoning:

0 < (a—2)3
0 < a*—4da+4
Ha-1) < o
log, (4(a—1)) < log, (a?)
2+logy(a—1) < 2logy
1+ ! logy(a—1) < logya.

2
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Remarks:

e Systems guys (the algorithm is called Ivy because it was used in a
system with the same name) have some fancy heuristics to improve
performance even more: For example, the root every now and then
broadcasts its name such that paths will be shortened.

What about concurrent requests? It works with the same argument
as in Arrow. Also for Ivy an argument including congestion is missing
(and more pressing, since the dynamic topology of a tree cannot be
chosen to have low degree and thus low congestion as in Arrow).

Sometimes the type of accesses allows that several accesses can be
combined into one to reduce congestion higher up the tree. Let the
tree in Algorithm 7.1 be a balanced binary tree. If the access to a
shared variable for example is “add value z to the shared variable”,
two or more accesses that accidentally meet at a node can be combined
into one. Clearly accidental meeting is rare in an asynchronous model.
We might be able to use synchronizers (or maybe some other timing
tricks) to help meeting a little bit.

Chapter Notes

The Arrow protocol was designed by Raymond [Ray89]. There are real life im-
plementations of the Arrow protocol, such as the Aleph Toolkit [Her99]. The
performance of the protocol under high loads was tested in [HW99] and other im-
plementations and variations of the protocol were given in, e.g., [PR99, HTWO00].

It has been shown that the find operations of thc protocol do not backtrack,
i.e., the time and message complexities are O(D) [DH98], and that the Arrow
protocol is fault tolerant [HTO01]. Given a set of concurrent request, Herlihy et
al. [HTWO01] showed that the time and message complexities are within factor
log R from the optimal, where R is the number of requests. Later, this analysis
was extended to long-lived and asynchronous systems. In particular, Herlihy et

[HKTWO6] showed that the competitive ratio in this asynchronous concur-
rent setting is O(log D). Thanks to the lower bound of the greedy TSP heuristic,
this is almost tight.

The Ivy system was introduced in [Li88, LH89]. On the theory side, it was
shown by Ginat et al. [GST89] that the amortized cost of a single request of
the Ivy protocol is ©(logn). Closely related work to the Ivy protocol on the
practical side is research on virtual memory and parallel computing on loosely
coupled multiprocessors. For example [BB81, LSHL82, FR86] contain studies on
variations of the network models, limitations on data sharing between processes
and different approaches.

Later, the research focus shifted towards systems where most data operations
were read operations, i.e., efficient caching became one of the main objects of
study, e.g., [MMVW97].

Arrow and Ivy are designed for trees or cliques, respectively. Arrow and Ivy
are combinable, as one can choose whether to point to directly to the source
or not — the Arvy protocol is the generalization of Arrow and Ivy [KW19].
Recently, other efficient shared object protocols for general networks have been
proposed [SBS12].
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