End-to-end Algorithm Synthesis with Recurrent Neural Networks

Arpit Bansal, Avi Schwarzschild, Eitan Borgnia, Zeyad Emam, Furong Huang, Micah Goldblum, Tom Goldstein

Presentation:
Max Krähenmann

Algorithm Synthesis

Simple primitives, complex strategies

Logical Extrapolation

... to be able to solve this

Learn on this...

Logical Extrapolation

Learn on this...

... or this

Figure 18: Fun for the whole family!

Logical Extrapolation

Learn on this...

... or this

Related Work

- Classical RNNs
\rightarrow amount of computation linked to input size
\rightarrow trained to produce one bit at a time
- Hybrid Models
\rightarrow not end-to-end

Don't think harder, think deeper

- Adaptive Neural Nets
\rightarrow vary computation based on input
\rightarrow all previous work on this was tested in-distribution

Benchmark Problems

Chess Puzzles

Prefix Sum

Maze Solving

[1]

1	0	0	1	1

[1]

NN Architecture

Feed Forward NN
Deep Thinking (DT) model

Problems with extrapolation

Tested on 48-bit Strings	
Model	Peak Acc. (\%)
DT	94.61 ± 1.19
FF	27.15 ± 2.56

Tested on 512-bit Strings	
Model	Peak Acc. (\%)
DT	0.00 ± 0.00
FF	0.00 ± 0.00

Tested on 13×13 Mazes

Model	Peak Acc. (\%)
DT	85.59 ± 2.81
FF	38.22 ± 5.28

Tested on 59×59 Mazes	
Model	Peak Acc. $(\%)$
DT	0.00 ± 0.00
FF	0.00 ± 0.00

Recall

Improvements

Tested on 512-bit Strings		Tested on 59×59 Mazes	
Model	Peak Acc. (\%)	Model	Peak Acc. (\%)
DT	0.00 ± 0.00	DT	0.00 ± 0.00
DT-Recall	96.19 ± 3.73	DT-Recall	82.72 ± 15.14
FF	0.00 ± 0.00	FF	0.00 ± 0.00

"Overthinking"

Training with progressive loss

$m \leftarrow$ max. num. of iterations

$$
n \leftarrow U(0, m-1)
$$

$$
k \leftarrow U(1, m-n)
$$

Loss Function

$$
\mathcal{L}=(1-\alpha) \cdot \mathcal{L}_{\text {max_iters }}+\alpha \cdot \mathcal{L}_{\text {progressive }}
$$

Compute $\nabla_{\theta} \mathcal{L}$ and update θ

Results: Prefix Sum

- Trained on 32-bit data and evaluated on 512-bit data

1	0	0	1	1

Results: Maze Solving

- Trained on 9x9, evaluated on 59×59

Results: Chess Puzzles

- Trained on 600k easiest, evaluated on 600k-700k easiest

Manipulating Inputs

How long to recover

- What happens when features are swapped

What does the Model really do?

Problem:
10101000101101001100111101010000
Target:
11001111001001110111010110011111
Iterations:
11001110100110001111010110111101 11001111000110001001010110011101 11001111001000001000100110011111 11001111001001111000101001011111 11001111001001110111101001100111 11001111001001110111010001100000 11001111001001110111010110010001 11001111001001110111010110011111

What does the Model really do?

10101010100100110111001010110100010100011000111101 10101001100011001011111010110000000100010110110011 10101001111101010110000010110000001011010111000011 10101001111100110111111100110000001011101001001100 10101001111100101000111010001100001011101000110100 10101001111100101000000110110000111011101000110011 10101001111100101000000101000000001001101000110011 10101001111100101000000101001111101011011000110011 10101001111100101000000101001111110011101011110011 10101001111100101000000101001111110100001000110011 10101001111100101000000101001111110100010110110011 10101001111100101000000101001111110100010111001011 10101001111100101000000101001111110100010111001100

What does the Model really do?

What does the Model really do?

Conclusion: Problems

Tested on 512-bit Strings	
Model	Peak Acc. (\%)
DT	0.00 ± 0.00
DT-Recall	0.19 ± 3.73
FF	

Conclusion: Main Contributions

$$
\mathcal{L}=(1-\alpha) \cdot \mathcal{L}_{\text {max_iters }}+\alpha \cdot \mathcal{L}_{\text {progressive }}
$$

Conclusion: Results

100

Discussion: strong points

- Ideas simple and useful
- Extrapolation to bigger problems not often done
- Good contribution to algorithm synthesis

Discussion: weak points

- More baselines needed to properly assess performance
- Benchmark problems are toy-ish
- No investigation as to what the Net is doing in its "thinking" process

