

DRL meets GNN: exploring a routing optimization use case

Hongze Wang D.ITET 14. 03 2023

Highlights of paper

Reinforcement Learning Graph Neural Networks

Generalization Capability for RL

Graph as input data structure

What is RL?

agent

environment

Goal: Maximize the expected cumulative rewards!

RL basic concept

Episode:

Bellman equation

Policy:
$$\pi(a|s) = P(A_t = a|S_t = s)$$

$$Q(s,a) = E[R_{t+1} + \gamma Q(s_{t+1},a')|S_t = s, A_t = a]$$

Bellman optimality equation

$$Q^*(s, a) = E[R_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') | S_t = s, A_t = a]$$

Q-value:
$$Q_{\pi}(s, a) = E_{\pi}[\sum_{n=0}^{N} \gamma^{n} r_{t+n} | S_{t} = s, A_{t} = a]$$

Seminar in Deep Neural Networks

Q-learning

For each step t:

1. Choose an action a_t from s_t using policy derived from Q – table.

2. Take the action a_t and observe r_{t+1} , s_{t+1}

$$3.Q(s_t, a_t) = Q(s_t, a_t) + \alpha \left[R_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t) \right]$$
$$Q(s_t, a_t) = (1 - \alpha)Q(s_t, a_t) + \alpha \left[R_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') \right]$$

Q-learning

Initial:

		0	1	2	3	4	5
	0	0	0	0	0	0	0
	1	0	0	0	0	0	0
Q=	2	0	0	0	0	0	0
~	3	0	0	0	0	0	0
	4	0	0	0	0	0	0
	5	0	0	0	0	0	0
		-					

$$Q(s_1, a_5) = (1 - \alpha)Q(s_1, a_5) + \alpha \left[100 + \gamma \max_{a'} Q(s_5, a')\right]$$

= 100\alpha

Q-learning

Initial:

Intro to DRL: From Q-learning to DQN

For a real-world problem:

 S_t is the location of Mario $\leftarrow \uparrow \rightarrow$ are the actions

Q-table for this problem X

 $Q(s,a) \approx Q(s,a;\theta)$

Intro to DRL: From Q-learning to DQN

You successfully learnt Deep Reinforcement Learning!

For example:

Demand list:

1.{src=1,dst=5,bandwidth=8}

2.{src=1,dst=5,bandwidth=8}

. . .

n.{src,dst,bandwidth}

For example:

- 1. The agent must make decisions for every demand.
- 2. Traffic demands can not split over multiple paths.
- 3. Traffic demands will not expire until the end of episode.

Possible method?

Integer Linear Programming?

Constraint Programming?

Too complex

Possible method?

Theoretical Fluid?

Theoretical Fluid?

1.{src=1,dst=5,bandwidth=8}

Split into different sub-demand

Possible method?

2. Traffic demands can not split over multiple paths.

Theoretical Fluid?

Compute fast! Great Performance! Can not use in real world

Possible method?

MDP problem?

Too many states!

Cost too much time

Dynamic programming?

 $S \approx O(N^E)$

Wait! We have DRL!

. . .

Paper: Routing Based On Deep Reinforcement Learning In Optical Transport Networks

ETH ZÜRICh Seminar in Deep Neural Networks

Paper: Routing Based On Deep Reinforcement Learning In Optical Transport Networks

ETH ZÜRICh Seminar in Deep Neural Networks

Actor-critic algorithm:

Paper: Routing Based On Deep Reinforcement Learning In Optical Transport Networks

ETH zürich Seminar in Deep Neural Networks

Drawback?

Lack of generalization capability!

DRL for Optimization

Resource: https://distill.pub/2021/gnn-intro/

ETH zürich

Link feature

 x_1 is Link available capacity

 x_2 is Link Betweenness

 x_3 is Action vector

 $x_4 \dots x_N$ are zeros

Why these features?

Link feature

 x_1 is Link available capacity

 x_2 is Link Betweenness

 x_3 is Action vector

 $x_4 \dots x_N$ are zeros

Link feature

 x_1 is Link available capacity

 x_2 is Link Betweenness

 $Link Betweenness = \frac{The number of end to end paths crossing the link}{The number of tatal paths}$

Guess?

Link feature

 x_1 is Link available capacity

 x_2 is Link Betweenness

 x_3 is Action vector

 $x_4 \dots x_N$ are zeros

Link feature(hidden states)

 x_1 is Link available capacity

 x_2 is Link Betweenness

 x_3 is Action vector

 $x_4 \dots x_N$ are zeros

Message Passing Neural Network (MPNN)

Algorithm 1 Message Passing			
Input : \mathbf{x}_l			
$\mathbf{Output}: \mathbf{h}_l^T, q$			
1: for each $l \in \mathcal{L}$ do			
2: $h_l^0 \leftarrow [\mathbf{x}_l, 0 \dots, 0]$			
3: for $t = 1$ to T do			
4: for each $l \in \mathcal{L}$ do			
5: $M_l^{t+1} = \sum_{i \in N(l)} m(h_l^t, h_i^t)$			
6: $h_l^{t+1} = u\left(h_l^t, \dot{M}_l^{t+1} ight)$			
7: $rdt \leftarrow \sum_{l \in \mathcal{L}} h_l$			
8: $q \leftarrow R(rdt)$			

For a demand:

Many possible actions

|A|

 \frown Limit the action set to k = 4 shortest paths

Generalization

Trade off between complexity and flexibility

Cumulative Reward?

DRL + GNN algorithm

Algorithm 2 DRL Agent operation 1: $s, src, dst, bw \leftarrow env.init env()$ 2: reward $\leftarrow 0, k \leftarrow 4, agt.mem \leftarrow \{\}, Done \leftarrow False$ 3. while not Done do $k_q_values \leftarrow \{ \}$ 4: $k_shortest_paths \leftarrow compute_k_paths(k, src, dst)$ 5: for i in 0, ..., k do 6: $p' \leftarrow get path(i, k shortest paths)$ 7: $s' \leftarrow env.alloc_demand(s, p', src, dst, dem)$ 8: $k_q_values[i] \leftarrow compute_q_value(s', p')$ 9: q value \leftarrow epsilon greedy(k q values, ϵ) 10: $a \leftarrow get action(q value, k shortest paths, s)$ 11: $r, Done, s', src', dst', bw' \leftarrow env.step(s, a)$ 12: agt.rmb(s, src, dst, bw, a, r, s', src', dst', bw')13: $reward \leftarrow reward + r$ 14: If training_steps % M == 0: agt.replay() 15: $src \leftarrow src'; dst \leftarrow dst'; bw \leftarrow bw', s \leftarrow s'$ 16:

DRL+GNN

Stage 1:

ETH zürich

Demand generation:

Score of 1000 experiments:

	DRL+GNN	DRL+CNN	LB	TF
1	1000	900	700	850
2	1300	1000	750	900
•••				

Relative performance wrt TF

	DRL+GNN	DRL+CNN	LB	TF
1	17.65%	5.88%	-17.65%	0
2	44.44%	11.11%	-16.67%	0

 $F_X(x) = P(X \le x)$

ETH zürich

Real world

Fig. 6: DRL+GNN evaluation on a use case with link failures.

Conclusion

1. The paper combines Deep reinforcement learning with Graph neural networks.

2. For the same topology, DRL+GNN works better than other methods.

3.DRL+GNN have a better generalization capability.

Any question?

Thank you!

