Highly accurate protein structure prediction with AlphaFold

Jumper, J., Evans, R., Pritzel, A. et al.

Presentation by Yannick Wattenberg

What are Proteins?

- Proteins are long chains of amino acids
- They perform many functions within organisms

Fig. 1: Primary structure of a protein

Protein Folding

Fig. 25: DNA replication by DNA polymerase

Fig. 2: Kinesin protein walking on microtubule

Protein Folding

Why prediction?

- Finding the structure of proteins is time intensive
- The process can span years for complex proteins

CASP

- Participants are asked to predict the structure of Proteins
- Predictions are made on Proteins with previously unknown structure
- Problem of structure prediction considered solved at a GDT-TD of 90

Median Free-Modelling Accuracy

Fig. 6: Performance of AlphaFold2 compared to previous competitions

The Network

The Network

Input

- MSA maps evolutionary relationships between residues
- Conserved regions are likely to be functionally important

Fig. 8: Illustration of MSA

Input

- The model uses the structures of similar proteins as a basis
- These templates are used to bias the pair representation

Fig. 9: Examples of myoglobin from different animals

Evoformer

Evoformer

Row/Column-wise Attention

Fig. 11: Row attention block

Evoformer

Triangle updates

- Basic idea: adhere to triangle inequality
- Update an edge based on all the triangles it is involved in

- C Triangle multiplicative update using 'outgoing' edges
- Triangle multiplicative update using 'incoming' edges

Structure module

Structure module

- Protein backbone modeled as 3D gas of triangles
- No enforcement of chain

Fig. 13: Illustration of the ridged body gas

Structure module

Invariant Point Attention

- 3D equivariant transformer updates triangles (position/rotation)
- Coordinates in local frame are invariant in respect to global frame

Residue prediction

 The atom location of the side chains can be parametrized using only four additional angles

The Model

Physical correction

Recycling iteration 0, block 01 Secondary structure assigned from the final prediction

Vid. 16: AlphaFold folding a complex protein

Model Confidence

- Alpha fold produces confidence measures for each residue
- This is essential for the interpretability of the produced structures

https://alphafold.com/entry/Q9Y223

Fig. 18: Alpha Fold prediction overlayed with experimental structure (green)

Fig. 17: Confidence Matrix

Results

Recycling iteration 0, block 01 Secondary structure assigned from the final prediction

Fig. 20: GDT against number of Evoformer blocks

Results

Fig. 22: Structure of SARS-CoV-2 ORF3a

Sources

- <u>https://www.britannica.com/science/protein</u>
- <u>Tim Green: Highly accurate protein structure prediction with AlphaFold YouTube</u>
- <u>AlphaFold Protein Structure Database</u>
- Putting the power of AlphaFold into the world's hands
- AlphaFold: a solution to a 50-year-old grand challenge in biology
- <u>AlphaFold reveals the structure of the protein universe</u>
- <u>Timeline of a breakthrough</u>
- Highly accurate protein structure prediction with AlphaFold | Nature
- AI@MIT Alphafold 2 Reading Group Presentation: Paper Deep Dive YouTube
- <u>bayesgroup.github.io/Figurnov_Alphafold.pdf at master · bayesgroup/bayesgroup.github.io · GitHub</u>
- OpenFold2
- Multiple sequence alignment modeling: methods and applications | Briefings in Bioinformatics | Oxford Academic
- <u>AlphaFold 2 is here: what's behind the structure prediction miracle | Oxford Protein Informatics Group AlphaFold 2: Attention Mechanism for Predicting 3D Protein Structures | Artificial Intelligence & Software | PLIP LAW https://alphafold.com/entry/Q9Y223
 </u>
- Invariant Point Attention in Alphafold 2 | by Jude Wells | Medium
- <u>https://www.nature.com/articles/s41586-019-1923-7.epdf?author_access_token=Z_KaZKDqtKzbE7Wd5Htwl9RgN0jAjWel9jnR3ZoTv0MCcgAwHMgRx9mvLjNQdB2TlQQaa7l420UCtGo8vYQ39gg8lFWR9mAZtvsN_1PrccXflbc6e-tGSgazNL_XdtQzn1PHfy21qdcxV7Pw-k3htw%3D%3D
 </u>

Image sources

Fig. 1: https://www.killowen.com/assets/amino%20acid8.png 18.03

Fig. 2: "Cellular Visions: The Inner Life of a Cell" By Beth Marchant / July 20, 2006

Fig. 3: https://martinswellness.com/media/wysiwyg/blog/protein-structure-1920x1200px.jpg 11.03

Fig. 4: https://en.wikipedia.org/wiki/X-ray_crystallography#/media/File:X_ray_diffraction.png 11.03

Fig. 5: Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold (fig. 1)

Fig. 6: https://www.deepmind.com/blog/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology 11.03

Fig. 7: Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold (fig. 1)

Fig. 8: https://jgi.doe.gov/seeking-structure-metagenome-sequences/cartoon-coevolution-sergey-o/

Fig. 9: https://i0.wp.com/www.blopig.com/blog/wp-content/uploads/2021/07/myoglobin-1.png 14.03

Fig. 10: Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold (fig. 3)

Fig. 11: Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold (sup. fig. 3 (Additional Material))

Fig. 12: Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold (fig. 3)

Fig. 13: https://github.com/bayesgroup/bayesgroup.github.io/blob/master/bmml_sem/2021/Figurnov_Alphafold.pdf 11.03

Fig. 14: Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold (fig. 3)

Fig. 15: https://i0.wp.com/www.researchgate.net/profile/Jes-Frellsen/publication/44651362/figure/fig4/AS:267569261183037@1440804891902/Dihedral-angles-in-glutamate-Dihedral-angles-are-the-main-degrees-of-freedom-for-the.png?w=625&ssl=1 11.03

Vid. 16: Supplementary Video 4 (Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold)

Fig. 17: https://alphafold.ebi.ac.uk/entry/Q9Y223 11.03

Fig. 18: <u>https://www.ebi.ac.uk/pdbe/pdbe-kb/proteins/Q9Y223 11.03</u>

Fig. 19: https://www.rcsb.org/3d-view/6XDC/1 11.03

Fig. 20: Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold (fig. 4)

Fig. 21: https://static-content.springer.com/esm/art%3A10.1038%2Fs41586-021-03819-2/MediaObjects/41586_2021_3819_MOESM5_ESM.mp4 (Jumper, J., Evans, R., Pritzel, A. *et al.* Highly accurate protein structure prediction with AlphaFold)

Fig. 22: Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold (fig. 4)

Fig. 23: Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold (fig. 1)

Fig. 24: Jumper, J., Evans, R., Pritzel, A. et al. Highly accurate protein structure prediction with AlphaFold (fig. 3)

Fig. 25: <u>https://www.youtube.com/watch?v=OjPcT1uUZiE</u> 19.03

Triangle update

Jumper, J., Evans, R., Pritzel, A. *et al.* Highly accurate protein structure prediction with AlphaFold (Additional Material)

Triangle attention

Jumper, J., Evans, R., Pritzel, A. *et al.* Highly accurate protein structure prediction with AlphaFold (Additional Material)

IPA

Jumper, J., Evans, R., Pritzel, A. *et al.* Highly accurate protein structure prediction with AlphaFold (Additional Material)

Feature embedding

Jumper, J., Evans, R., Pritzel, A. *et al.* Highly accurate protein structure prediction with AlphaFold (Additional Material)

Alpha Fold 1

a Sequence and MSA features

Deep neural network

Distance and torsion distribution predictions

Gradient descent on protein-specific potential

AlphaFold: Improved protein structure prediction using potentials from deep learning