
Distributed
 Computing

FS 2023 Prof. R. Wattenhofer

Principles of Distributed Computing
Exercise 6

1 Communication Complexity of Set Disjointness

In the lecture we studied the communication complexity of the equality function. Now we consider
the disjointness function: Alice and Bob are given subsets X,Y ⊆ {1, . . . , k} and need to determine
whether they are disjoint. Each subset Z ⊆ {1, . . . , k} can be represented by a string of bits
z ∈ {0, 1}k, where the ith bit of z is 1 if and only if i ∈ Z. Now, we can define the disjointness of
x and y as:

DISJ(x, y) :=

{
0, if there is an index i such that xi = yi = 1

1, otherwise.

a) Write down MDISJ for function DISJ when k = 3. Bonus, for fun: How does MDISJ look
in general? Can you spot any patterns?

b) Use the matrix obtained in a) to provide a fooling set of size 4 for DISJ when k = 3.

c) Prove that if S is a fooling set and (x1, y1), (x2, y2) are two different elements of S, then
x1 ̸= x2 and y1 ̸= y2.

d) Prove that CC (DISJ) = Ω(k).

2 Distinguishing Diameter 2 from 4

In the lecture we stated that when the bandwidth of each edge is limited to O(log n), the diameter
of a graph can be computed in O(n). In this problem, we show that we can do much faster in
case we know that all networks/graphs on which we execute our algorithm have either diameter
2 or diameter 4. We start by partitioning the nodes of our graph G = (V,E) into two sets: let
s := s(n) be a threshold to be determined later and define the set of high degree nodes H :=
{v ∈ V | d(v) ≥ s} and the set of low degree nodes L := {v ∈ V | d(v) < s}. Next, we define
a dominating set DOM ⊆ V to be a subset of nodes such that each node in the graph is either
in DOM or is adjacent to a node in the DOM . For this problem we assume that if all nodes in
G have degree at least s, then one can compute a dominating set DOM of size at most n logn

s in
time O(D).
Note: We define N1(v) as the closed neighborhood of node v (v and its adjacent nodes).

a) What is the distributed runtime of Algorithm 2-vs-4 (stated next page)? In case you believe
that the distributed implementation of a step is not known from the lecture, find a distributed
implementation for this step! Hint: The runtime depends on s and n.

Algorithm 1 “2-vs-4”

Input: Graph G with diameter 2 or 4.
Output: Diameter of G.

1: if L ̸= ∅ then
2: Choose v ∈ L. ▷ We know: this takes time O(D).
3: Compute a BFS tree from each node in N1(v).
4: else
5: Compute a dominating set DOM of size at most n logn

s . ▷ Use: Assumption
6: Compute a BFS tree starting from each node in DOM.
7: end if
8: if all BFS trees have depth 1 or 2 then
9: return 2

10: else
11: return 4
12: end if

b) Find a function s := s(n) such that the runtime is minimized (in terms of n).

c) Prove that if the diameter is 2, then Algorithm 2-vs-4 always returns 2.

Now, assume that the diameter of the network is 4 and that s and t are vertices with distance
4 to each other.

d) Prove that if the algorithm performs a BFS from at least one node w ∈ N1(s), then it decides
that the diameter is 4.

e) Assuming L ̸= ∅, prove that the algorithm performs a BFS of depth at least 3 from some
node w. Hint: use d).

f) Assuming L = ∅, prove that the algorithm performs a BFS of depth at least 3 from some
node w.

We have now proven that Algorithm 2-vs-4 is always correct in distinguishing graphs of diam-
eter 2 from graphs of diameter 4.

g) Give a high level idea why you think that this does not violate the lower bound of Ω(n/ log n)
presented in the lecture!

h) Assuming s = n/2, prove or disprove: if the diameter is 2, then Algorithm 2-vs-4 will always
compute some BFS tree of depth exactly 2.

2

