
Distributed
 Computing

FS 2024 Prof. R. Wattenhofer

Principles of Distributed Computing

Exercise 9

Recall that an algorithm is self-stabilizing if, starting from any configuration, it eventually
reaches a legitimate configuration. In addition, once the system reaches a legitimate configuration,
all further configurations are legitimate.

1 Self-Stabilizing (∆ + 1)-Coloring

As a warm-up, we will take a look at the algorithm below, meant to compute a proper (∆ + 1)-
coloring. We assume that ∆ is publicly known and cannot be corrupted.

Algorithm 1 (∆ + 1)-Coloring?

1: Node u holds a variable cu, and a variable cv for each neighbor v.
2: When receiving c′v from neighbor v, u sets cv := c′v.
3: At all times, node u checks whether both of the conditions below hold:
4: cu is an integer between 1 and ∆ + 1.
5: ∀v ∈ N(u) : cu ̸= cv.
6: If any of these conditions fails, node u updates cu:
7: cu := lowest integer between 1 and ∆ + 1 such that ∀v ∈ N(u) : cu ̸= cv.
8: In every round, node u sends cu to all neighbors.

a) Define a legitimate configuration for the (∆ + 1)-coloring problem.

b) We run the Algorithm 1 on the graph below. The nodes’ labels represent the initial colors
cu, and each node already knows its neighbors’ colors. In addition, no transient faults occur.
Do we reach a legitimate configuration?

c) Is Algorithm 1 indeed a self-stabilizing (∆+1)-coloring algorithm? If yes, prove that this is
indeed the case. If not, briefly explain why and describe how to fix the issues.

2 Self-stabilizing Spanning Tree

We now move our focus to spanning trees. In this exercise, we are searching for efficient, determin-
istic, self-stabilizing spanning tree algorithms. We assume a leader node root. Each node except
for the root needs to hold a parent node pu such that the edges (pu, u) define a tree.

a) Show that any deterministic self-stabilizing spanning tree algorithm requires Ω(D) rounds,
where D denotes the diameter of the graph we are running the algorithm on.

b) We now want to apply the transformation from the lecture to the Bellman-Ford BFS algo-
rithm (see Algorithm 2). We assume that the root’s identity is hardcoded (and cannot be
corrupted). In addition, we assume that the nodes know the diameter of the graph D (which
is also hardcoded, and cannot be corrupted).

Is the time complexity of the resulting self-stabilizing algorithm optimal? How much more
information per round must be transmitted compared to the original algorithm?

Algorithm 2 Bellman-Ford BFS

1: Each node u stores an integer du which corresponds to the distance from u to the root, and
a node pu representing its parent in the spanning tree. Initially droot := 0 and du := ∞ for
every non-root node u. Every node sets pu := ⊥.

2: The root starts the algorithm by sending “1” to all neighbors.
3: if a node u receives a message “y” with y < du from a neighbor v then
4: node u sets du := y and pu := v
5: node u sends “y + 1” to all neighbors (except v)
6: end if

3 Crash Failures

Transient faults are not the only issues that can occur in a distributed system. In this exercise,
we will focus on coloring algorithms that can tolerate permanent crash failures.

Our network is synchronous and shaped as a path of n nodes. The nodes know n and can
distinguish between their left and their right neighbor (if any). Out of the n nodes, t < n nodes
may crash permanently at any point.

Our goal is to obtain a proper coloring in this setting, i.e., to give different colors to any two
adjacent non-crashing nodes. Note that we do not require output from any of the crashing nodes.

a) Describe a deterministic algorithm obtaining a proper 2-coloring in this setting.

b) What if the network is asynchronous, i.e., the only guarantee is that messages get delivered
eventually? Is there a deterministic algorithm obtaining a proper 2-coloring in this setting?
If your answer is yes, then describe such an algorithm. Otherwise, explain why no such
algorithm exists.

2

