
Distributed
 Computing

FS 2024 Prof. R. Wattenhofer

Principles of Distributed Computing

Exercise 7: Sample Solution

1 Concurrent Ivy

a) The three nodes are served in the order v2, v3, v1.

b) Figure 1 depicts the structure of the tree after the requests have been served. Since v1 is
served last, it is the holder of the token at the end.

Figure 1: Tree after the requests have been served.

2 Tight Ivy

a) In order to show that the bound of log n steps on average is tight, we construct a special
tree which is defined recursively as follows. The tree T0 consists of a single node. The tree
Ti consists of a root together with i subtrees, which are T0, . . . , Ti−1, rooted at the i children
of the root, see Figure 2.

First, we will show that the number of nodes in the tree Ti is 2i. This obviously holds for
T0. The induction hypothesis is that it holds for all T0, . . . , Ti−1. It follows that the number
of nodes of Ti is n = 1 +

∑i−1
j=0 2

j = 2i.

We will show now that the radius of the root of Ti is R(Ti) = i. Again, this is trivially true
for T0. It is easy to see that R(Ti) = 1+R(Ti−1), because Ti−1 is the child with the largest
radius. Inductively, it follows that R(Ti) = i.

By definition, when cutting off the subtree Ti−1 from Ti, the resulting tree is again Ti−1. Let
C : Ti 7→ Ti−1 denote this cutting operation. For all i > 0, we thus have that C(Ti) = Ti−1.

Figure 2: The trees T0, . . . , T3.

We will now start a request at the single node v with a distance of i from the root in Ti.
On its path to the root, the request passes nodes that are roots of the trees T1, . . . , Ti. All
of those nodes become children of the new root v according to the Ivy protocol. The new
children lose their largest “child” subtree in the process, thus the children of node v have the
structures C(T1), . . . , C(Ti) = T0, . . . , Ti−1. Hence, the structure of the tree does not change
due to the request and all subsequent requests can also cost i steps. Since n = 2i, each
request costs exactly log n.

b) The access pattern we described above already has the property that each node requests the
object in sequence. We can show this inductively over i for the trees Ti.
First we introduce some additional notation. We consider a tree Ti, for any i > 0, as two
parts: The left subtree L(Ti), which has the structure of Ti−1, and the rest of the tree R(Ti),
which also has the same structure has Ti−1. We then write Ti = L(Ti) → R(Ti) to indicate
that Ti is the tree obtained by rooting L(Ti) as the left-most child of the root in R(Ti). We
note that with this notation one iteration of Ivy handling a request from the highest-depth
leaf performs a tree rotation that can be described recursively as Rot(Ti) = Rot(R(Ti)) →
L(Ti). We further write Rotk(Ti) = Rot(Rotk−1(Ti)) with Rot0(Ti) = Ti.
We can now show this inductively over i for the trees Ti. We will start with T1 as the
base case since our notation only works for i > 0 and the case for T0 is trivial. In the
first iteration on T1 the leaf node requests the object, after that the edge is switched and
the previous root node requests the object. For the inductive step we observe that over
i iterations of the access pattern above Ivy accesses the highest-depth leaves of the trees

Ti,Rot(Ti), . . . ,Rot2
i−1(Ti). Unwinding the definition of Rot we see that these correspond

to the highest-depth leaves of L(Ti),Rot(L(Ti)), . . . ,Rot2
i−1−1(L(Ti)) on even (zero-indexed)

iterations, and Rot(R(Ti)),Rot2(R(Ti)), . . . ,Rot2
i−1

(R(Ti)) on odd (zero-indexed) iterations.
According to the inductive hypothesis these iterate through the 2i−1 nodes of the two subtrees
L(Ti) and R(Ti). Thereby the alternation of the two iterates over all 2i nodes of Ti.

2

