
Introduction

What are Distributed Algorithms?

In the last few decades, we have experienced an unprecedented growth in the
area of distributed systems and networks. Distributed computing now encom-
passes many of the activities occurring in today’s computer and communications
world. Indeed, distributed computing appears in quite diverse application areas:
The Internet is a distributed system, but so are wireless communication, cloud
or parallel computing, multi-core systems, mobile networks. Also an ant colony,
a brain, or even the human society can be modeled as distributed systems.

These applications have in common that many processors or entities (often
called nodes) are active in the system at any moment. The nodes have certain
degrees of freedom: they have their own hard- and software. Nevertheless, the
nodes may share common resources and information, and, in order to solve
a problem that concerns several—or maybe even all—nodes, coordination is
necessary.

Despite these commonalities, a human brain is of course very different from
a multi-core processor. Due to such differences, many different models and pa-
rameters are studied in the area of distributed computing. In some systems
the nodes operate synchronously, in other systems they operate asynchronously.
There are simple homogeneous systems, and heterogeneous systems where dif-
ferent types of nodes, potentially with different capabilities, objectives etc., need
to interact. There are different communication techniques: nodes may commu-
nicate by exchanging messages, or by means of a shared memory. Occasionally
the communication infrastructure is tailor-made for an application, sometimes
one has to work with any given infrastructure. The nodes in a distributed
system often work together to solve a global task, occasionally the nodes are
autonomous agents that have their own agenda and compete for common re-
sources. Sometimes the nodes can be assumed to work correctly, at times they
may exhibit failures. In contrast to a single-node system, distributed systems
may still function correctly despite failures as other nodes can take over the work
of the failed nodes. There are different kinds of failures that can be considered:
nodes may just crash, or they might exhibit an arbitrary, erroneous behavior,
maybe even to a degree where it cannot be distinguished from malicious (also
known as Byzantine) behavior. It is also possible that the nodes follow the rules
indeed, however they tweak the parameters to get the most out of the system;
in other words, the nodes act selfishly.

Apparently, there are many models (and even more combinations of models)
that can be studied. We will not discuss them in detail now, but simply define

1



2 CONTENTS

them when we use them. Towards the end of the book, the reader should know
the most important concepts, and a general picture should emerge, hopefully!

Book Overview

This book introduces the basic principles of distributed computing, highlighting
common themes and techniques. In particular, we study some of the fundamen-
tal issues underlying the design of distributed systems:

• Communication: Communication does not come for free; often communi-
cation cost dominates the cost of local processing or storage. Sometimes
we even assume that everything but communication is free.

• Coordination: How can you coordinate a distributed system so that it
performs some task efficiently? How much overhead is inevitable?

• Fault-tolerance: A major advantage of a distributed system is that even
in the presence of failures the system as a whole may survive.

• Locality: Networks keep growing. Luckily, global information is not always
needed to solve a task, often it is sufficient if nodes talk to their neighbors.
Whether a local solution is possible is one of the core topics of this book.

• Parallelism: How fast can you solve a task if you increase your computa-
tional power, e.g., by increasing the number of nodes that can share the
workload? How much parallelism is possible for a given problem?

• Symmetry breaking: Sometimes some nodes need to be selected to or-
chestrate computation or communication. This is achieved by a technique
called symmetry breaking.

• Synchronization: How can you implement a synchronous algorithm in an
asynchronous environment?

• Uncertainty: If we need to agree on a single term that fittingly describes
this book, it is probably “uncertainty”. As the whole system is distributed,
the nodes cannot know what other nodes are doing at this exact moment,
and the nodes are required to solve the tasks at hand despite the lack of
global knowledge.

Finally, there are also a few areas that we will not cover in this book,
mostly because these topics have become so important that they deserve their
own books. Examples for such topics are distributed programming or secu-
rity/cryptography.

In summary, in this book we explore essential algorithmic ideas and lower
bound techniques, basically the “pearls” of distributed computing and network
algorithms.

Have fun!



BIBLIOGRAPHY 3

Chapter Notes

Many excellent text books have been written on the subject. The most closely
related book is by David Peleg [Pel00], as it some of the material. A main focus
of Peleg’s book are network partitions, covers, decompositions, and spanners –
an interesting area that we will only touch in this book. There exist a multitude
of other text books that overlap with one or two chapters of this course, e.g.,
[Lei92, Bar96, Lyn96, Tel01, AW04, HKP+05, CLRS09, Suo12, TR18]. Another
related course is by James Aspnes [Asp] and one by Jukka Suomela [Suo14].

Some chapters of this book have been developed in collaboration with (for-
mer) Ph.D. students. Many colleagues and students have helped to improve the
book. Thanks go to Georg Bachmeier, Philipp Brandes, Raphael Eidenbenz,
Roland Flury, Klaus-Tycho Förster, Stephan Holzer, Barbara Keller, Fabian
Kuhn, Michael Kuhn, Christoph Lenzen, Darya Melnyk, Thomas Locher, Remo
Meier, Thomas Moscibroda, Regina O’Dell, Yvonne-Anne Pignolet, Noy Rot-
bart, Jochen Seidel, Stefan Schmid, Johannes Schneider, Jara Uitto, Pascal von
Rickenbach (in alphabetical order).

Bibliography
[Asp] James Aspnes. Notes on Theory of Distributed Systems.

[AW04] Hagit Attiya and Jennifer Welch. Distributed Computing: Funda-
mentals, Simulations and Advanced Topics (2nd edition). John Wi-
ley Interscience, March 2004.

[Bar96] Valmir C. Barbosa. An introduction to distributed algorithms. MIT
Press, Cambridge, MA, USA, 1996.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms (3. ed.). MIT Press, 2009.

[HKP+05] Juraj Hromkovic, Ralf Klasing, Andrzej Pelc, Peter Ruzicka, and
Walter Unger. Dissemination of Information in Communication
Networks - Broadcasting, Gossiping, Leader Election, and Fault-
Tolerance. Texts in Theoretical Computer Science. An EATCS Se-
ries. Springer, 2005.

[Lei92] F. Thomson Leighton. Introduction to parallel algorithms and ar-
chitectures: array, trees, hypercubes. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1992.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1996.

[Pel00] David Peleg. Distributed Computing: a Locality-Sensitive Approach.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000.

[Suo12] Jukka Suomela. Deterministic Distributed Algorithms, 2012.

[Suo14] Jukka Suomela. Distributed algorithms. Online textbook, 2014.



4 CONTENTS

[Tel01] Gerard Tel. Introduction to Distributed Algorithms. Cambridge Uni-
versity Press, New York, NY, USA, 2nd edition, 2001.

[TR18] Gadi Taubenfeld and Michel Raynal. Distributed Computing Pearls.
Morgan & Claypool, 2018.


