
Chapter 2

Tree Algorithms

In this chapter we learn a few basic algorithms on trees, and how to construct
trees in the first place so that we can run these (and other) algorithms. The
good news is that these algorithms have many applications, the bad news is that
this chapter is a bit on the simple side. But maybe that’s not really bad news?!

2.1 Broadcast

Definition 2.1 (Broadcast). A broadcast operation is initiated by a single node,
the source. The source wants to send a message to all other nodes in the system.

Definition 2.2 (Distance, Radius, Diameter). The distance between two nodes
u and v in an undirected graph G is the number of hops of a minimum path
between u and v. The radius of a node u is the maximum distance between u
and any other node in the graph. The radius of a graph is the minimum radius
of any node in the graph. The diameter of a graph is the maximum distance
between two arbitrary nodes.

Remarks:

• Clearly there is a close relation between the radius R and the diameter
D of a graph, such as R ≤ D ≤ 2R.

Definition 2.3 (Message Complexity). The message complexity of an algo-
rithm is determined by the total number of messages exchanged.

Theorem 2.4 (Broadcast Lower Bound). The message complexity of broadcast
is at least n− 1. The source’s radius is a lower bound for the time complexity.

Proof: Every node must receive the message.

Remarks:

• You can use a pre-computed spanning tree to do broadcast with tight
message complexity. If the spanning tree is a breadth-first search
spanning tree (for a given source), then the time complexity is tight
as well.

15

16 CHAPTER 2. TREE ALGORITHMS

Definition 2.5 (Clean). A graph (network) is clean if the nodes do not know
the topology of the graph.

Theorem 2.6 (Clean Broadcast Lower Bound). For a clean network, the num-
ber of edges m is a lower bound for the broadcast message complexity.

Proof: If you do not try every edge, you might miss a whole part of the graph
behind it.

Definition 2.7 (Asynchronous Distributed Algorithm). In the asynchronous
model, algorithms are event driven (“upon receiving message . . . , do . . . ”).
Nodes cannot access a global clock. A message sent from one node to another
will arrive in finite but unbounded time.

Remarks:

• The asynchronous model and the synchronous model (Definition 1.8)
are the cornerstone models in distributed computing. As they do
not necessarily reflect reality there are several models in between syn-
chronous and asynchronous. However, from a theoretical point of view
the synchronous and the asynchronous model are the most interesting
ones (because every other model is in between these extremes).

• Note that in the asynchronous model, messages that take a longer
path may arrive earlier.

Definition 2.8 (Asynchronous Time Complexity). For asynchronous algorithms
(as defined in 2.7) the time complexity is the number of time units from the
start of the execution to its completion in the worst case (every legal input, ev-
ery execution scenario), assuming that each message has a delay of at most one
time unit.

Remarks:

• You cannot use the maximum delay in the algorithm design. In other
words, the algorithm has to be correct even if there is no such delay
upper bound.

• The clean broadcast lower bound (Theorem 2.6) directly brings us to
the well known flooding algorithm.

Algorithm 2.9 Flooding
1: The source (root) sends the message to all neighbors.
2: Each other node v upon receiving the message the first time forwards the

message to all (other) neighbors.
3: Upon later receiving the message again (over other edges), a node can dis-

card the message.

2.2. CONVERGECAST 17

Remarks:

• If node v receives the message first from node u, then node v calls
node u parent. This parent relation defines a spanning tree T . If the
flooding algorithm is executed in a synchronous system, then T is a
breadth-first search spanning tree (with respect to the root).

• More interestingly, also in asynchronous systems the flooding algo-
rithm terminates after R time units, R being the radius of the source.
However, the constructed spanning tree may not be a breadth-first
search spanning tree.

2.2 Convergecast
Convergecast is the same as broadcast, just reversed: Instead of a root sending
a message to all other nodes, all other nodes send information to a root (starting
from the leaves, i.e., the tree T is known). The simplest convergecast algorithm
is the echo algorithm:

Algorithm 2.10 Echo
1: A leaf sends a message to its parent.
2: If an inner node has received a message from each child, it sends a message

to the parent.

Remarks:

• Usually the echo algorithm is paired with the flooding algorithm,
which is used to let the leaves know that they should start the echo
process; this is known as flooding/echo.

• One can use convergecast for termination detection, for example. If a
root wants to know whether all nodes in the system have finished some
task, it initiates a flooding/echo; the message in the echo algorithm
then means “This subtree has finished the task.”

• Message complexity of the echo algorithm is n− 1, but together with
flooding it is O(m), where m = |E| is the number of edges in the
graph.

• The time complexity of the echo algorithm is determined by the depth
of the spanning tree (i.e., the radius of the root within the tree) gen-
erated by the flooding algorithm.

• The flooding/echo algorithm can do much more than collecting ac-
knowledgements from subtrees. One can for instance use it to com-
pute the number of nodes in the system, or the maximum ID, or the
sum of all values stored in the system, or a route-disjoint matching.

• Moreover, by combining results one can compute even fancier aggrega-
tions, e.g., with the number of nodes and the sum one can compute the
average. With the average one can compute the standard deviation.
And so on . . .

18 CHAPTER 2. TREE ALGORITHMS

2.3 BFS Tree Construction
In synchronous systems the flooding algorithm is a simple yet efficient method to
construct a breadth-first search (BFS) spanning tree. However, in asynchronous
systems the spanning tree constructed by the flooding algorithm may be far from
BFS. In this section, we implement two classic BFS constructions—Dijkstra and
Bellman-Ford—as asynchronous algorithms.

We start with the Dijkstra algorithm. The basic idea is to always add the
“closest” node to the existing part of the BFS tree. We need to parallelize
this idea by developing the BFS tree layer by layer. The algorithm proceeds
in phases. In phase p the nodes with distance p to the root (at level p) are
detected.

Algorithm 2.11 Dijkstra BFS
1: We start with phase p = 1 with a tree T which is the root plus all direct

neighbors of the root:
2: repeat
3: The root starts phase p by broadcasting “start p” within T .
4: When receiving “start p”, a leaf node u of T (that is, a node at level p)

sends a “join p+1” message to all quiet neighbors. (A neighbor v is quiet
if u has not yet communicated with v.)

5: If a node v that is not yet in T receives a “join p+1” message, then node
v replies with “ACK” and becomes a new leaf of the tree T at level p+1.

6: If a node v is already in T , the node v replies with “NACK” to all “join”
messages.

7: The leaves of T at level p collect all the answers of their neighbors; then
the leaves start an echo algorithm back to the root.

8: When the echo process terminates at the root, the root increments the
phase.

9: until there was no new node detected

Theorem 2.12. The time complexity of Algorithm 2.11 is O(D2), the message
complexity is O(m+ nD), where D is the diameter of the graph, n the number
of nodes, and m the number of edges.

Proof: A broadcast/echo algorithm in a BFS tree needs at most time 2D. Find-
ing new neighbors at the leaves costs 2 time units. Since the BFS tree height
is bounded by the diameter, we have D phases, giving a total time complexity
of O(D2). Each node participating in broadcast/echo only receives at most 1
message while broadcasting and sends at most 1 message while echoing. Since
there are D phases, the cost is bounded by O(nD). On each edge there are at
most 2 “join” messages. Replies to a “join” request are answered by 1 “ACK” or
“NACK” , which means that we have at most 4 additional messages per edge.
Therefore the message complexity is O(m+ nD).

Remarks:

• The time complexity is not very exciting, so let’s try Bellman-Ford!

The basic idea of Bellman-Ford is even simpler, and heavily used in the
Internet, as it is a basic version of the omnipresent border gateway protocol

2.4. MST CONSTRUCTION 19

(BGP). The idea is to simply keep the distance to the root accurate. If a
neighbor has found a better route to the root, a node might also need to update
its distance.

Algorithm 2.13 Bellman-Ford BFS
1: Each node u stores an integer du which corresponds to the distance from u

to the root. Initially droot = 0, and du =∞ for every other node u.
2: The root starts the algorithm by sending “1” to all neighbors.
3: if a node u receives a message “y” with y < du from a neighbor v then
4: node u sets du := y
5: node u sends “y + 1” to all neighbors (except v)
6: end if

Theorem 2.14. The time complexity of Algorithm 2.13 is O(D), the message
complexity is O(nm), where D,n,m are defined as in Theorem 2.12.

Proof: We can prove the time complexity by induction. We claim that a node
at distance d from the root has received a message “d” by time d. The root
knows by time 0 that it is the root. A node v at distance d has a neighbor u at
distance d− 1. Node u by induction sends a message “d” to v at time d− 1 or
before, which is then received by v at time d or before. Message complexity is
easier: A node can reduce its distance at most n− 1 times; each of these times
it sends a message to all its neighbors. If all nodes do this, then we have O(nm)
messages.

Remarks:

• Algorithm 2.11 has the better message complexity and Algorithm 2.13
has the better time complexity. The currently best algorithm (opti-
mizing both) needs O(m + n log3 n) messages and O(D log3 n) time.
This “trade-off” algorithm is beyond the scope of this chapter, but we
will later learn the general technique.

2.4 MST Construction

There are several types of spanning trees, each serving a different purpose. A
particularly interesting spanning tree is the minimum spanning tree (MST). The
MST only makes sense on weighted graphs, hence in this section we assume that
each edge e is assigned a weight ωe.

Definition 2.15 (MST). Given a weighted graph G = (V,E, ω), the MST of
G is a spanning tree T minimizing ω(T), where ω(G′) =

∑
e∈G′ ωe for any

subgraph G′ ⊆ G.

Remarks:

• In the following we assume that no two edges of the graph have the
same weight. This simplifies the problem as it makes the MST unique;
however, this simplification is not essential as one can always break
ties by adding the IDs of adjacent vertices to the weight.

20 CHAPTER 2. TREE ALGORITHMS

• Obviously we are interested in computing the MST in a distributed
way. For this we use a well-known lemma:

Definition 2.16 (Blue Edges). Let T be a spanning tree of the weighted graph
G and T ′ ⊆ T a subgraph of T (also called a fragment). Edge e = (u, v) is an
outgoing edge of T ′ if u ∈ T ′ and v /∈ T ′ (or vice versa). The minimum weight
outgoing edge b(T ′) is the so-called blue edge of T ′.

Lemma 2.17. For a given weighted graph G (such that no two weights are the
same), let T denote the MST, and T ′ be a fragment of T . Then the blue edge
of T ′ is also part of T , i.e., T ′ ∪ b(T ′) ⊆ T .

Proof: For the sake of contradiction, suppose that in the MST T there is edge
e ̸= b(T ′) connecting T ′ with the remainder of T . Adding the blue edge b(T ′)
to the MST T we get a cycle including both e and b(T ′). If we remove e from
this cycle, then we still have a spanning tree, and since by the definition of the
blue edge ωe > ωb(T ′), the weight of that new spanning tree is less than than
the weight of T . We have a contradiction.

Remarks:

• In other words, the blue edges seem to be the key to a distributed
algorithm for the MST problem. Since every node itself is a fragment
of the MST, every node directly has a blue edge! All we need to do
is to grow these fragments! Essentially this is a distributed version of
Kruskal’s sequential algorithm.

• At any given time the nodes of the graph are partitioned into frag-
ments (rooted subtrees of the MST). Each fragment has a root, the
ID of the fragment is the ID of its root. Each node knows its parent
and its children in the fragment. The algorithm operates in phases.
At the beginning of a phase, nodes know the IDs of the fragments of
their neighbor nodes.

Remarks:

• Algorithm 2.18 was stated in pseudo-code, with a few details not re-
ally explained. For instance, it may be that some fragments are much
larger than others, and because of that some nodes may need to wait
for others, e.g., if node u needs to find out whether neighbor v also
wants to merge over the blue edge b = (u, v). The good news is that
all these details can be solved. We can for instance bound the asyn-
chronicity by guaranteeing that nodes only start the new phase after
the last phase is done, similarly to the phase-technique of Algorithm
2.11.

Theorem 2.19. The time complexity of Algorithm 2.18 is O(n log n), the mes-
sage complexity is O(m log n).

Proof: Each phase mainly consists of two flooding/echo processes. In general,
the cost of flooding/echo on a tree is O(D) time and O(n) messages. However,
the diameter D of the fragments may turn out to be not related to the diameter
of the graph because the MST may meander, hence it really is O(n) time. In

2.4. MST CONSTRUCTION 21

Algorithm 2.18 GHS (Gallager–Humblet–Spira)
1: Initially each node is the root of its own fragment. We proceed in phases:
2: repeat
3: All nodes learn the fragment IDs of their neighbors.
4: The root of each fragment uses flooding/echo in its fragment to determine

the blue edge b = (u, v) of the fragment.
5: The root sends a message to node u; while forwarding the message on the

path from the root to node u all parent-child relations are inverted {such
that u is the new temporary root of the fragment}

6: node u sends a merge request over the blue edge b = (u, v).
7: if node v also sent a merge request over the same blue edge b = (v, u)

then
8: either u or v (whichever has the smaller ID) is the new fragment root
9: the blue edge b is directed accordingly

10: else
11: node v is the new parent of node u
12: end if
13: the newly elected root node informs all nodes in its fragment (again using

flooding/echo) about its identity
14: until all nodes are in the same fragment (i.e., there is no outgoing edge)

addition, in the first step of each phase, nodes need to learn the fragment ID of
their neighbors; this can be done in 2 steps but costs O(m) messages. There are
a few more steps, but they are cheap. Altogether a phase costs O(n) time and
O(m) messages. So we only have to figure out the number of phases: Initially all
fragments are single nodes and hence have size 1. In a later phase, each fragment
merges with at least one other fragment, that is, the size of the smallest fragment
at least doubles. In other words, we have at most log n phases. The theorem
follows directly.

Chapter Notes

Trees are one of the oldest graph structures, already appearing in the first book
about graph theory [Koe36]. Broadcasting in distributed computing is younger,
but not that much [DM78]. Overviews about broadcasting can be found for
example in Chapter 3 of [Pel00] and Chapter 7 of [HKP+05]. For a introduction
to centralized tree-construction, see e.g. [Eve79] or [CLRS09]. Overviews for the
distributed case can be found in Chapter 5 of [Pel00] or Chapter 4 of [Lyn96].
The classic papers on routing are [For56, Bel58, Dij59]. In a later chapter, we
will later learn a general technique to derive algorithms with an almost optimal
time and message complexity.

Algorithm 2.18 is called “GHS” after Gallager, Humblet, and Spira, three
pioneers in distributed computing [GHS83]. Their algorithm won the presti-
gious Edsger W. Dijkstra Prize in Distributed Computing in 2004, among other
reasons because it was one of the first non-trivial asynchronous distributed al-
gorithms. As such it can be seen as one of the seeds of this research area. We
presented a simplified version of GHS. The original paper featured an improved
message complexity of O(m + n log n). Later, Awerbuch managed to further

22 CHAPTER 2. TREE ALGORITHMS

improve the GHS algorithm to get O(n) time and O(m+n log n) message com-
plexity, both asymptotically optimal [Awe87].

Bibliography
[Awe87] B. Awerbuch. Optimal distributed algorithms for minimum weight

spanning tree, counting, leader election, and related problems. In
Proceedings of the nineteenth annual ACM symposium on Theory of
computing, STOC ’87, pages 230–240, New York, NY, USA, 1987.
ACM.

[Bel58] Richard Bellman. On a Routing Problem. Quarterly of Applied
Mathematics, 16:87–90, 1958.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms (3. ed.). MIT Press, 2009.

[Dij59] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs.
Numerische Mathematik, 1(1):269–271, 1959.

[DM78] Y.K. Dalal and R.M. Metcalfe. Reverse path forwarding of broadcast
packets. Communications of the ACM, 12:1040–148, 1978.

[Eve79] S. Even. Graph Algorithms. Computer Science Press, Rockville, MD,
1979.

[For56] Lester R. Ford. Network Flow Theory. The RAND Corporation
Paper P-923, 1956.

[GHS83] R. G. Gallager, P. A. Humblet, and P. M. Spira. Distributed Algo-
rithm for Minimum-Weight Spanning Trees. ACM Transactions on
Programming Languages and Systems, 5(1):66–77, January 1983.

[HKP+05] Juraj Hromkovic, Ralf Klasing, Andrzej Pelc, Peter Ruzicka, and
Walter Unger. Dissemination of Information in Communication
Networks - Broadcasting, Gossiping, Leader Election, and Fault-
Tolerance. Texts in Theoretical Computer Science. An EATCS Se-
ries. Springer, 2005.

[Koe36] Denes Koenig. Theorie der endlichen und unendlichen Graphen.
Teubner, Leipzig, 1936.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1996.

[Pel00] David Peleg. Distributed Computing: a Locality-Sensitive Approach.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000.

