
Chapter 6

Global Problems

This chapter is on “hard” problems in distributed computing. In sequential com-
puting, there are NP-hard problems which are conjectured to take exponential
time. Is there something similar in distributed computing? Using flooding/echo
(Algorithms 2.9 and 2.10) from Chapter 2, everything so far was solvable basi-
cally in O(D) time, where D is the diameter of the network.

6.1 Diameter & All Pairs Shortest Paths (APSP)
But how do we compute the diameter itself!?! With flooding/echo, of course!

Algorithm 6.1 Naïve Diameter Computation
1: All nodes compute their radius by synchronous flooding/echo.
2: All nodes flood their radius on their respective BFS trees.
3: The maximum radius a node sees is the diameter.

Remarks:

• Since all these phases only take O(D) time, nodes know the diameter
in O(D) time, which is asymptotically optimal.

• However, there is a problem! Nodes are now involved in n parallel
flooding/echo processes, thus a node may have to handle many and
big messages in one time step. Although this is not strictly illegal
in the message passing model, it still feels like cheating! A natural
question now is whether we can do the same by just sending short
messages in each round.

• In Definition 1.8 of Chapter 1 we postulated that nodes should send
only messages of “reasonable” size. In this chapter we make this more
precise by requiring that each message should have at most O(log n)
bits. This is generally enough to communicate a constant number
of ID’s or values to each neighbor, but not enough to communicate
everything a node knows to a neighbor in a single round!

• A simple way to avoid large messages is to split them into small mes-
sages that are sent over several rounds. This can cause that messages

54



6.1. DIAMETER & ALL PAIRS SHORTEST PATHS (APSP) 55

are getting delayed in some nodes but not in others. Each flooding
might not use edges of a BFS tree anymore, so the computed dis-
tances might no longer be correct! On the other hand, we know that
the maximal message size in Algorithm 6.1 is O(n log n), so we could
just simulate each of these “big message” rounds by n “small message”
rounds using small messages. This yields a runtime of O(nD), which
is not desirable. A third possible approach is “starting each flood-
ing/echo one after each other”, also resulting in worst case O(nD).

• So, let us fix the above algorithm! The key idea is to arrange the
flooding-echo processes in a more organized way: Start the flooding
processes in a certain order and prove that, at any time, each node is
only involved in at most one flooding. This will be done in Algorithm
6.4.

Definition 6.2 (BFSv). Performing a breadth first search at node v produces
a spanning tree BFSv (see Chapter 2). This takes time O(D) using small mes-
sages.

Remarks:

• The depth of node u in BFSv is d(u, v).

Definition 6.3 (Euler Tour). A spanning tree of a graph G can be traversed
in time O(n) using a pebble that starts at the root and moves to a neighbor at
each time step, using the following logic: if the node the pebble is currently at
has any unvisited children, then the pebble moves to such a child, otherwise it
moves back to the parent. The process ends when the pebble would move to the
(nonexistent) parent of the root. Such a traversal is known as an Euler tour.

Algorithm 6.4 Computing APSP on G.
1: Assume we have a leader node l (if not, compute one first).
2: Compute BFS l of leader l.
3: send a pebble P to traverse BFS l in an Euler tour.
4: while P traverses BFS l do
5: if P visits a new node v then
6: Immediately start BFSv from node v to compute all distances to v.
7: Pebble P waits one time step to avoid congestion.
8: end if
9: end while

Remarks:

• Algorithm 6.4 works as follows: Given a graph G, first a leader l com-
putes its BFS tree BFS l. Then, we send a pebble P to traverse BFS l.
Each time pebble P enters a node v for the first time it starts a BFS
from v with the aim of computing the distances from v to all other
nodes. After starting the BFS, P waits one time step before moving
to a neighbor. Since we start a BFSv from every node v, each node u
learns its distance to all other nodes v during the according execution
of BFSv. There is no need for an echo-process at the end of BFSu.



56 CHAPTER 6. GLOBAL PROBLEMS

• Having all distances is nice, but how do we get the diameter? Well, as
before, each node could just flood its radius (its maximum distance)
into the network. However, messages are small now and we need to
modify this slightly. In each round a node only sends the maximal
distance that it is aware of to its neighbors. After D rounds each
node will know the maximum distance among all nodes.

Lemma 6.5. In Algorithm 6.4, at no time a node w is simultaneously active
for both BFSu and BFSv.

Proof. Assume a BFSu is started at time tu at node u. Then, node w will be
involved in BFSu at time tu + d(u,w). Now, consider a node v whose BFSv

is started at time tv > tu. According to the algorithm, this implies that the
pebble visits v after u and takes some time to travel from u to v. In particular,
the time to get from u to v is at least d(u, v). In addition the pebble waited one
time step at node u after starting BFSu, so we have tv ≥ tu+d(u, v)+1. Using
this and the triangle inequality, we get that node w is involved in BFSv strictly
after being involved in BFSu since tv + d(v, w) ≥ (tu + d(u, v) + 1) + d(v, w) ≥
tu + d(u,w) + 1 > tu + d(u,w).

Theorem 6.6. Algorithm 6.4 computes all pairs shortest paths in time O(n).

Proof. Since the previous lemma holds for any pair of vertices, no two BFS’s
“interfere” with each other, i.e. all messages can be sent on time without con-
gestion. Hence, all BFS’s stop at most D time steps after they were started.
We conclude that the runtime of the algorithm is determined by the time O(D)
we need to build tree BFS l, plus the time O(n) that P needs to traverse BFS l,
plus the time O(D) needed by the last BFS to finish.

Remarks:

• All of a sudden our algorithm needs O(n) time, and possibly n≫ D.
We should be able to do better, right?!

• Unfortunately not! Later this lecture we prove that computing the
diameter of a network needs Ω(n/ log n) time.

• Note that one can check whether a graph has diameter 1 by exchang-
ing some specific information such as the degree with the neighbors.
However, already checking for diameter 2 is difficult.

6.2 Lower Bound Graphs

We define a family G of graphs that we use to prove a lower bound on the
rounds needed to compute the diameter. To simplify our analysis, we assume
that n − 2 is divisible by 8. We start by defining four sets of nodes, each
consisting of q = q(n) := (n− 2)/4 nodes. Throughout this chapter we write [q]



6.2. LOWER BOUND GRAPHS 57

as a shorthand for {1, . . . , q} and define:

L0 := {li | i ∈ [q]} (upper left in Figure 6.7)
L1 := {l′i | i ∈ [q]} (lower left in Figure 6.7)
R0 := {ri | i ∈ [q]} (upper right in Figure 6.7)
R1 := {r′i | i ∈ [q]} (lower right in Figure 6.7)

L0 R0

R1L1

cL cR

l1 r1

l2 r2

l01 r0
1

l02 r0
2

Figure 6.7: The above skeleton G′ contains n = 10 nodes, such that q = 2.

We add node cL and connect it to all nodes in L0 and L1. Then, we add
node cR and connect it to all nodes in R0 and R1. Furthermore, nodes cL and
cR are connected by an edge. For i ∈ [q] we connect li to ri and l′i to r′i. Also,
we add edges such that nodes in L0 form a clique, nodes in L1 form a clique,
nodes in R0 form a clique, and nodes in R1 form a clique. The resulting graph
is called G′. Graph G′ is the skeleton of any graph in family G: all graphs in G
are formed by starting with G′ and adding additional edges to it. More formally,
skeleton G′ = (V ′, E′) is defined as:

V ′ :=L0 ∪ L1 ∪R0 ∪R1 ∪ {cL, cR}
E′ :={(v, cL) | v ∈ L0 ∪ L1} (Connections to cL)
∪ {(v, cR) | v ∈ R0 ∪R1} (Connections to cR)
∪ {(cL, cR)} (Edge from cL to cR)

∪
⋃
i∈[q]

{(li, ri), (l′i, r′i)} (Connects left to right)

∪ {(u, v) ∈ S2 | S ∈ {L0,L1,R0,R1}, u ̸= v} (Clique edges)

To simplify our arguments, we partition G′ into two parts: Part L is the
subgraph induced by nodes L0 ∪L1 ∪{cL}, Part R is the subgraph induced by
nodes R0 ∪R1 ∪ {cR}.

Family G consists of all graphs G that can be constructed from G′ by adding
any combination of edges of the form (li, l

′
j) or (ri, r

′
j) where i, j ∈ [q].

Lemma 6.9. The diameter of a graph G = (V,E) ∈ G is 2 if and only if for
every pair (i, j) ∈ [q]2 either (li, l

′
j) ∈ E or (ri, r

′
j) ∈ E (or both).



58 CHAPTER 6. GLOBAL PROBLEMS

Part L Part R

cL cR

l1 r1

l2 r2

l01 r0
1

l02 r0
2

Figure 6.8: The above graph G has n = 10 and is a member of family G. What
is the diameter of G?

Proof. Note that the distance between most pairs of nodes is at most 2. In
particular, the radii of cL and cR are 2. Thanks to cL and cR, the distance
between any two nodes within Part L and within Part R is at most 2. Because
of the cliques L0,L1,R0,R1, the distances between li and rj , respectively l′i and
r′j is at most 2.

The only interesting case is between a node li ∈ L0 and a node r′j ∈ R1

(or, symmetrically, between l′j ∈ L1 and ri ∈ R0). If either edge (li, l
′
j) or

edge (ri, r
′
j) is present, then this distance is 2, since the path (li, l

′
j , r

′
j) or the

path (li, ri, r
′
j) exists. If neither of the two edges exist, then the neighborhood

of li consists of {cL, ri}, all nodes in L0, and some nodes in L1 \ {l′j}, and the
neighborhood of r′j consists of {cR, l′j} , all nodes in R1, and some nodes in R0 \
{ri} (see e.g. Figure 6.10 with i = 2 and j = 2.) Since the two neighborhoods
do not share a common node, the distance between li and r′j is at least 3.1

Remarks:

• Each part contains up to q2 ∈ Θ(n2) edges not belonging to the skele-
ton. The possible such edges are L0 × L1 and R0 ×R1, respectively.

• There are 2q + 1 ∈ Θ(n) edges connecting the left and the right part.
Since in each round we can transmit O(log n) bits over each edge
(in each direction), the bandwidth between Part L and Part R is
O(n log n).

• If we were to naïvely transmit an existence/nonexistence bit for each
of the Θ(n2) edges in L0×L1 from Part L over to Part R, we would
need at least Ω(n/ log n) rounds to get the information across, given
the bandwidth of O(n log n). But maybe we can do better?!? Can

1In fact, exactly 3 because of the path (li, cL, cR, r′j).



6.3. COMMUNICATION COMPLEXITY 59

cL cR

l1 r1

l2 r2

l01 r0
1

l02 r0
2

Figure 6.10: The neighborhood of l2 is cyan, the neighborhood of r′2 is white.
Since these neighborhoods do not intersect, the distance between these two
nodes is d(l2, r

′
2) > 2. If edge (l2, l

′
2) was included, their distance would be 2.

an algorithm be smarter and only send the information that is really
necessary to tell whether the diameter is 2?

• It turns out that any algorithm needs Ω(n/ log n) rounds, since the
information that is really necessary to tell that the diameter is larger
than 2 basically consists of Θ(n2) bits.

6.3 Communication Complexity
To prove the last remark formally, we can use arguments from two-party com-
munication complexity. This area essentially deals with a basic version of dis-
tributed computation: two parties are given some input each and want to solve
a task on their inputs.

We consider two students (Alice and Bob) at two different universities con-
nected by a communication channel (e.g., via email) and we assume this channel
to be reliable. Now, Alice and Bob want to check whether they received the
same problem set for homework (we assume their professors are lazy and wrote
it on the blackboard instead of putting up a nicely prepared document online.)
Do Alice and Bob really need to type the whole problem set into their emails?
More formally: Alice receives a k-bit string x and Bob another k-bit string y,
and the goal is for both of them to compute the equality function.

Definition 6.11 (Equality). We define the equality function EQ to be:

EQ(x, y) :=

{
1, x = y

0, x ̸= y.

Remarks:

• In a more general setting, Alice and Bob are interested in computing a
certain function f : {0, 1}k×{0, 1}k → {0, 1} with the least amount of
communication between them. Of course, they can always succeed by
having Alice send her whole k-bit string to Bob, who then computes



60 CHAPTER 6. GLOBAL PROBLEMS

the function, but the idea here is to find clever ways of calculating f
with less than k bits of communication. We measure how clever they
can be as follows:

Definition 6.12 (Communication Complexity). The communication complex-
ity of protocol A for function f is CC (A, f) := the minimum number of bits
exchanged between Alice and Bob in the worst case when using A.2 The com-
munication complexity of f is CC (f) := min{CC (A, f) | A computes f}. That
is the minimal number of bits that the best protocol needs to send in the worst
case.

Definition 6.13. For a given function f , we define a 2k × 2k matrix Mf rep-
resenting f. That is Mf

x,y := f(x, y).

Example 6.14. For EQ, in case k = 3, matrix MEQ looks like this:

EQ 000 001 010 011 100 101 110 111 ← x
000 1 0 0 0 0 0 0 0
001 0 1 0 0 0 0 0 0
010 0 0 1 0 0 0 0 0
011 0 0 0 1 0 0 0 0
100 0 0 0 0 1 0 0 0
101 0 0 0 0 0 1 0 0
110 0 0 0 0 0 0 1 0
111 0 0 0 0 0 0 0 1
↑ y


As a next step we define the notion of a (combinatorial) monochromatic

rectangle. These are “submatrices” of Mf which contain the same entry.

Definition 6.15 (Monochromatic Rectangle). A set R ⊆ {0, 1}k × {0, 1}k is
called a monochromatic rectangle, if and only if the following conditions hold:

• Whenever (x1, y1) ∈ R and (x2, y2) ∈ R, also (x1, y2) ∈ R.

• There is a fixed z such that f(x, y) = z for all (x, y) ∈ R.

Example 6.16. The first three of the following rectangles are monochromatic,
the last one is not:

Rectangle Example 6.14
R1 = {011} × {011} light gray
R2 = {011, 100, 101, 110} × {000, 001} gray
R3 = {000, 001, 101} × {011, 100, 110, 111} dark gray
R4 = {000, 001} × {000, 001} boxed

Each time Alice and Bob exchange a bit, they eliminate columns/rows of
the matrix Mf . What is left after exchanging some number of bits is a com-
binatorial rectangle. They can stop communicating as soon as the remaining
rectangle becomes monochromatic. However, maybe there is a more efficient
way to exchange information about a given bit string than just naïvely trans-
mitting contained bits? In order to cover all possible ways of communication,
we need the following definition:

2Note that in our setting we require that both Alice and Bob know the value of f(x, y) by
the end, but if only one knew the value then they could just send it to the other party.



6.3. COMMUNICATION COMPLEXITY 61

Definition 6.17 (Fooling Set). A set S ⊂ {0, 1}k ×{0, 1}k fools f if there is a
fixed z such that the following conditions hold:

• f(x, y) = z for each (x, y) ∈ S.

• For every (x1, y1), (x2, y2) ∈ S such that (x1, y1) ̸= (x2, y2), the rect-
angle {x1, x2} × {y1, y2} is not monochromatic: either f(x1, y2) ̸= z,
f(x2, y1) ̸= z, or both.

Example 6.18. Consider S = {(000, 000), (001, 001)}. Take a look at the non-
monochromatic rectangle R4 in Example 6.16. Verify that S is indeed a fooling
set for EQ!

Remarks:

• Can you find a larger fooling set for EQ?

• We assume that Alice and Bob take turns in sending a bit. This results
in 2 possible actions (send 0/1) per round and in 2t action patterns
during a sequence of t rounds.

Lemma 6.19. If S is a fooling set for f , then CC (f) = Ω(log |S|).

Proof. We prove the statement via contradiction: fix a protocol A and assume
that it needs t < log |S| rounds in the worst case. Then, there are 2t possible
action patterns, with 2t < |S|. Hence, for at least two elements of S, let us
call them (x1, y1) and (x2, y2), protocol A produces the same action pattern P .
Naturally, the action pattern on the alternative inputs (x1, y2), (x2, y1) will be
P as well: in the first round Alice and Bob have no information on the other
party’s string and send the same bit that was sent in P. Based on this, they
determine the second bit to be exchanged, which will be the same as the second
one in P since they cannot distinguish the cases. This continues for all t rounds.
We conclude that after t rounds, Alice does not know whether Bob’s input is y1
or y2 and Bob does not know whether Alice’s input is x1 or x2. By the definition
of fooling sets, either

• f(x1, y2) ̸= f(x1, y1) in which case Alice (with input x1) does not know
the solution yet,

or

• f(x2, y1) ̸= f(x1, y1) in which case Bob (with input y1) does not know the
solution yet.

This contradicts the assumption that A leads to a correct decision for all inputs
after t rounds. Therefore, at least log |S| rounds are necessary.

Theorem 6.20. CC (EQ) = Ω(k).

Proof. The set S := {(x, x) | x ∈ {0, 1}k} fools EQ and has size 2k. Now apply
Lemma 6.19.

Definition 6.21. Denote the negation of a string z by z and by x ◦ y the
concatenation of strings x and y.



62 CHAPTER 6. GLOBAL PROBLEMS

Lemma 6.22. Let x, y be k-bit strings. Then x ̸= y if and only if there is an
index i ∈ [2k] such that the ith bit of x ◦ x and the ith bit of y ◦ y are both 0.

Proof. If x ̸= y, there is j ∈ [k] such that x and y differ in the jth bit. Therefore,
either the jth bit of both x and y is 0, or the jth bit of both x and y is 0. For
this reason, there is an i ∈ [2k] such that x◦x and y ◦y are both 0 at position i.
If x = y, then for any i ∈ [2k] it is always the case that either the ith bit of x ◦x
is 1 or the ith bit of y ◦ y (which is the negation of x ◦ x in this case) is 1.

Remarks:

• With these insights we get back to the problem of computing the
diameter of a graph and relate this problem to EQ.

Definition 6.23. Using the parameter q defined before, we define a bijective
map between all pairs (x, y) of q2-bit strings and the graphs in G: each pair of
strings (x, y) is mapped to graph Gx,y ∈ G that is derived from skeleton G′ by
adding

• edge (li, l
′
j) to Part L if and only if the (j + q · (i− 1))th bit of x is 1.

• edge (ri, r
′
j) to Part R if and only if the (j + q · (i− 1))th bit of y is 1.

Remarks:

• Clearly, Part L of Gx,y depends on x only and Part R depends on
y only.

Lemma 6.24. Let x and y be (q2/2)-bit strings given to Alice and Bob.3 Then,
x = y if and only if graph G := Gx◦x,y◦y ∈ G has diameter 2.

Proof. By Lemma 6.22 we know that x ̸= y if and only if there is an index i ∈ [q]2

such that both x ◦ x and y ◦ y have the ith bit equal to 0. By construction of G,
this condition is equivalent to there existing (i, j) ∈ [q]2 such that (li, l′j) /∈ E(G)
and (ri, r

′
j) /∈ E(G). However, by negation in Lemma 6.9 this happens if and

only if G does not have diameter 2.

Theorem 6.25. Any distributed algorithm A that decides whether a graph G

has diameter D needs Ω
(

n
logn +D

)
time.

Proof. Computing D for sure needs time Ω(D). It remains to prove Ω (n/ log n).
To prove this term of the lower bound, it suffices to study D = 2. Assume there
is a distributed algorithm A that decides whether the diameter of a graph is
2 in time o(n/ log n). When Alice and Bob are given (q2/2)-bit inputs x and
y, they can simulate A to decide whether x = y as follows: Alice constructs
Part L of Gx◦x,y◦y and Bob constructs Part R. As we remarked, both parts
are independent of each other such that Part L can be constructed by Alice
without knowing y and Part R can be constructed by Bob without knowing x.
Furthermore, Gx◦x,y◦y has diameter 2 if and only if x = y (Lemma 6.24).

3This is why we need that n− 2 is divisible by 8.



6.3. COMMUNICATION COMPLEXITY 63

Now, Alice and Bob simulate the distributed algorithm A round by round: In
the first round, they determine which messages the nodes in their part of G
would send. Then, they use their communication channel to exchange all 2(2q+
1) ∈ Θ(n) messages that would be sent over edges between Part L and Part R
in this round while executing A on G. Based on this, Alice and Bob determine
which messages would be sent in round two, and so on. For each round simulated
by Alice and Bob, they only need to communicate O(n log n) bits: O(log n) bits
for each of O(n) messages. Since A makes a decision after o(n/ log n) rounds,
this yields a total communication of o(n2) bits. On the other hand, Lemma 6.20
states that to decide whether x equals y Alice and Bob need to communicate at
least Ω

(
q2/2

)
= Ω(n2) bits. A contradiction.

Remarks:

• Until now we only considered deterministic algorithms. Can one do
better using randomness?

Algorithm 6.26 Randomized Evaluation of EQ.
1: Alice and Bob use public randomness. That is they both have access to the

same random bit string z ∈ {0, 1}k
2: Alice sends bit a := (

∑
i∈[k] zixi) mod 2 to Bob.

3: Bob sends bit b := (
∑

i∈[k] ziyi) mod 2 to Alice.
4: if a ̸= b then
5: We know x ̸= y.
6: end if

Example 6.27. If x = y, then a = b for sure. Otherwise, if x ̸= y, Algorithm
6.26 might not reveal inequality: take, for instance, k = 2, x = 01, y = 10 and
z = 11, then we get a = b = 1.

Lemma 6.28. If x ̸= y, Algorithm 6.26 discovers x ̸= y with probability ≥ 1/2
under the assumption that bits of z are independent and have equal probabilities
of being 0 or 1.

Proof. Let I := {i ∈ [k] | xi ̸= yi} be the set of indices where xi ̸= yi. Since
x ̸= y, we know that |I| > 0. Observe that a− b ≡

∑
i∈I zi (mod 2). Since all

zi with i ∈ I are independent and have equal probabilities of being 0 or 1, we
get that

∑
i∈I zi ≡ 1 (mod 2) holds with probability 1/2. This is because I has

equally many subsets of even and odd counts. As a result, with probability at
least 1/2 it holds that a ̸= b.

Remarks:

• By excluding the vector z = 0k we can even get a discovery probability
strictly larger than 1/2.

• Repeating the Algorithm 6.26 with different random strings z, the
error probability can be reduced arbitrarily.

• Does this imply that there is a fast randomized algorithm to determine
the diameter? Unfortunately not!



64 CHAPTER 6. GLOBAL PROBLEMS

• Sometimes public randomness is not available, but private randomness
is. Here Alice has her own random string and Bob has his own random
string. A modified version of Algorithm 6.26 also works with private
randomness, but at the cost of runtime.

• One can prove an Ω(n/ log n) lower bound for any randomized distrib-
uted algorithm that computes the diameter. To do so, one considers
the disjointness function DISJ instead of equality. Here, Alice is given
a subset X ⊆ [k] and and Bob is given a subset Y ⊆ [k] and they need
to determine whether Y ∩ X = ∅. (X and Y can be represented by
k-bit strings x, y.) The reduction is similar to the one presented above
but uses graph Gx,y instead of Gx◦x,y◦y. However, the lower bound for
the randomized communication complexity of DISJ is more involved
than the lower bound for CC (EQ).

• Since one can compute the diameter given a solution for APSP, an
Ω(n/ log n) lower bound for APSP is implied. As such, our simple
Algorithm 6.4 is almost optimal!

• Many prominent functions allow for a low communication complex-
ity. For instance, CC (PARITY) = 2. What is the Hamming dis-
tance (number of different entries) of two strings? It is known that
CC (HAM ≥ d) = Ω(d). Also, CC (decide whether “HAM ≥ k/2+

√
k”

or “HAM ≤ k/2 −
√
k”) = Ω(k), even when using randomness. This

problem is known as the Gap-Hamming-Distance.

• Lower bounds in communication complexity have many applications.
Apart from getting lower bounds in distributed computing, one can
also get lower bounds regarding circuit depth or query times for static
data structures.

• In the distributed setting with limited bandwidth we showed that
computing the diameter has about the same complexity as computing
all pairs shortest paths. In contrast, in sequential computing, it is
a major open problem whether the diameter can be computed faster
than all pairs shortest paths. No nontrivial lower bounds are known,
only that Ω(n2) steps are needed – partly due to the fact that there can
be n2 edges/distances in a graph. On the other hand, the currently
best algorithm uses fast matrix multiplication and terminates after
O(n2.37188) steps.

6.4 Distributed Complexity Theory
We conclude this chapter with a short overview on the main complexity classes
of distributed message passing algorithms. Given a network with n nodes and
diameter D, we managed to establish a rich selection of upper and lower bounds
regarding how much time it takes to solve or approximate a problem. Currently
we know five main distributed complexity classes:

• Strictly local problems can be solved in constant O(1) time, e.g., a constant
approximation of a dominating set in a planar graph.



BIBLIOGRAPHY 65

• Just a little bit slower are problems that can be solved in log-star O(log∗ n)
time, e.g., many combinatorial optimization problems in special graph
classes such as growth bounded graphs. 3-coloring a ring takes O(log∗ n).

• A large body of problems is polylogarithmic (or pseudo-local), in the sense
that they seem to be strictly local but are not, as they need O(polylog n)
time, e.g., the maximal independent set problem.

• There are problems which are global and need O(D) time, e.g., to count
the number of nodes in the network.

• Finally there are problems which need polynomial O(poly n) time, even if
the diameter D is a constant, e.g., computing the diameter of the network.

Chapter Notes
The linear time algorithm for computing the diameter was discovered inde-
pendently by [HW12, PRT12]. The presented matching lower bound is by
Frischknecht et al. [FHW12], extending techniques by [DHK+11].

Due to its importance in network design, shortest path-problems in general
and the APSP problem in particular were among the earliest studied problems
in distributed computing. Developed algorithms were immediately used, e.g.,
as early as in 1969 in the ARPANET (see [Lyn96], p.506). Routing messages
via shortest paths were extensively discussed to be beneficial in [Taj77, MS79,
MRR80, SS80, CM82] and in many other papers. It is not surprising that there
is plenty of literature dealing with algorithms for distributed APSP, but most
of them focused on secondary targets such as trading time for message com-
plexity. E.g., papers [AR78, Tou80, Che82] obtain a communication complexity
of roughly O(n ·m) bits/messages and still require superlinear runtime. Also a
lot of effort was spent to obtain fast sequential algorithms for various versions
of computing APSP or related problems such as the diameter problem, e.g.,
[CW90, AGM91, AMGN92, Sei95, SZ99, BVW08]. These algorithms are based
on fast matrix multiplication, a topic which is heavily researched with improved
bounds almost every year.

The problem sets in which one needs to distinguish diameter 2 from 4 are
inspired by a combinatorial (×, 3/2)-approximation in a sequential setting by
Aingworth et. al. [ACIM99]. The main idea behind this approximation is to
distinguish diameter 2 from 4. This part was transferred to the distributed
setting in [HW12].

Two-party communication complexity was introduced by Andy Yao in [Yao79].
Later, Yao received the Turing Award. A nice introduction to communication
complexity covering techniques such as fooling-sets is the book by Nisan and
Kushilevitz [KN97].

Bibliography
[ACIM99] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast Estima-

tion of Diameter and Shortest Paths (Without Matrix Multiplica-
tion). SIAM Journal on Computing (SICOMP), 28(4):1167–1181,
1999.



66 CHAPTER 6. GLOBAL PROBLEMS

[AGM91] N. Alon, Z. Galil, and O. Margalit. On the exponent of the all pairs
shortest path problem. In Proceedings of the 32nd Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages
569–575, 1991.

[AMGN92] N. Alon, O. Margalit, Z. Galilt, and M. Naor. Witnesses for Boolean
Matrix Multiplication and for Shortest Paths. In Proceedings of
the 33rd Annual Symposium on Foundations of Computer Science
(FOCS), pages 417–426. IEEE Computer Society, 1992.

[AR78] J.M. Abram and IB Rhodes. A decentralized shortest path algo-
rithm. In Proceedings of the 16th Allerton Conference on Commu-
nication, Control and Computing (Allerton), pages 271–277, 1978.

[BVW08] G.E. Blelloch, V. Vassilevska, and R. Williams. A New Combina-
torial Approach for Sparse Graph Problems. In Proceedings of the
35th international colloquium on Automata, Languages and Pro-
gramming, Part I (ICALP), pages 108–120. Springer-Verlag, 2008.

[Che82] C.C. Chen. A distributed algorithm for shortest paths. IEEE Trans-
actions on Computers (TC), 100(9):898–899, 1982.

[CM82] K.M. Chandy and J. Misra. Distributed computation on graphs:
Shortest path algorithms. Communications of the ACM (CACM),
25(11):833–837, 1982.

[CW90] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. Journal of symbolic computation (JSC),
9(3):251–280, 1990.

[DHK+11] A. Das Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pan-
durangan, D. Peleg, and R. Wattenhofer. Distributed Verification
and Hardness of Distributed Approximation. Proceedings of the 43rd
annual ACM Symposium on Theory of Computing (STOC), 2011.

[FHW12] S. Frischknecht, S. Holzer, and R. Wattenhofer. Networks Can-
not Compute Their Diameter in Sublinear Time. In Proceedings
of the 23rd annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1150–1162, January 2012.

[HW12] Stephan Holzer and Roger Wattenhofer. Optimal Distributed All
Pairs Shortest Paths and Applications. In PODC, page to appear,
2012.

[KN97] E. Kushilevitz and N. Nisan. Communication complexity. Cam-
bridge University Press, 1997.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1996.

[MRR80] J. McQuillan, I. Richer, and E. Rosen. The new routing algorithm
for the ARPANET. IEEE Transactions on Communications (TC),
28(5):711–719, 1980.



BIBLIOGRAPHY 67

[MS79] P. Merlin and A. Segall. A failsafe distributed routing proto-
col. IEEE Transactions on Communications (TC), 27(9):1280–
1287, 1979.

[PRT12] David Peleg, Liam Roditty, and Elad Tal. Distributed Algorithms
for Network Diameter and Girth. In ICALP, page to appear, 2012.

[Sei95] R. Seidel. On the all-pairs-shortest-path problem in unweighted
undirected graphs. Journal of Computer and System Sciences
(JCSS), 51(3):400–403, 1995.

[SS80] M. Schwartz and T. Stern. Routing techniques used in computer
communication networks. IEEE Transactions on Communications
(TC), 28(4):539–552, 1980.

[SZ99] A. Shoshan and U. Zwick. All pairs shortest paths in undirected
graphs with integer weights. In Proceedings of the 40th Annual
IEEE Symposium on Foundations of Computer Science (FOCS),
pages 605–614. IEEE, 1999.

[Taj77] W.D. Tajibnapis. A correctness proof of a topology information
maintenance protocol for a distributed computer network. Commu-
nications of the ACM (CACM), 20(7):477–485, 1977.

[Tou80] S. Toueg. An all-pairs shortest-paths distributed algorithm. Tech.
Rep. RC 8327, IBM TJ Watson Research Center, Yorktown
Heights, NY 10598, USA, 1980.

[Yao79] A.C.C. Yao. Some complexity questions related to distributive com-
puting. In Proceedings of the 11th annual ACM symposium on The-
ory of computing (STOC), pages 209–213. ACM, 1979.


