The Locality of Maximal Matching

Manuela Fischer
ETH Zurich
Locality
Locality
Locality
Locality
Locality
LOCAL Model Linial [FOCS’87]
LOCAL Model \textit{Linial [FOCS’87]}

standard synchronous message-passing model of distributed computing
LOCAL Model \textit{Linial} [FOCS’87]

standard synchronous message-passing model of distributed computing
LOCAL Model \textit{Linial [FOCS’87]}

standard synchronous message-passing model of distributed computing

- undirected graph $G = (V, E)$, n nodes, maximum degree Δ
LOCAL Model \hspace{1em} Linial [FOCS’87]

standard synchronous message-passing model of distributed computing

- undirected graph $G = (V, E)$, n nodes, maximum degree Δ
LOCAL Model \textit{Linial [FOCS’87]}

standard synchronous message-passing model of distributed computing

• undirected graph $G = (V, E)$,
n nodes, maximum degree Δ
LOCAL Model *Linial* [FOCS’87]

standard synchronous message-passing model of distributed computing

- undirected graph $G = (V, E)$, n nodes, maximum degree Δ
- each round, every node
 - receives messages (sent in previous round)
 - performs some computation
 - sends message to all its neighbors
LOCAL Model

Linial [FOCS’87]

standard synchronous message-passing model of distributed computing

• undirected graph $G = (V, E)$,
n nodes, maximum degree Δ

• each round, every node
 • receives messages (sent in previous round)
 • performs some computation
 • sends message to all its neighbors

• unbounded message size
LOCAL Model \textit{Linial [FOCS’87]}

standard synchronous message-passing model of distributed computing

- undirected graph $G = (V, E)$, n nodes, maximum degree Δ
- each round, every node
 - receives messages (sent in previous round)
 - performs some computation
 - sends message to all its neighbors
- unbounded message size
- unbounded computation
LOCAL Model

Linial [FOCS’87]

standard synchronous message-passing model of distributed computing

• undirected graph $G = (V, E)$, n nodes, maximum degree Δ

• each round, every node
 • receives messages (sent in previous round)
 • performs some computation
 • sends message to all its neighbors

• unbounded message size

• unbounded computation

• Round Complexity: number of rounds to solve the problem
LOCAL Model \textit{Linial [FOCS’87]}

standard synchronous message-passing model of distributed computing

- undirected graph $G = (V, E)$, n nodes, maximum degree Δ
- each round, every node
 - receives messages (sent in previous round)
 - performs some computation
 - sends message to all its neighbors
- unbounded message size
- unbounded computation

Round Complexity:
number of rounds to solve the problem

Round complexity of a problem in the LOCAL model characterizes its locality
LOCAL Model

Linial [FOCS’87]

standard synchronous message-passing model of distributed computing

• undirected graph $G = (V, E)$, n nodes, maximum degree Δ

• each round, every node
 • receives messages (sent in previous round)
 • performs some computation
 • sends message to all its neighbors

• unbounded message size
• unbounded computation

• **Round Complexity:**
 number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality
LOCAL Model \(\text{Linial [FOCS’87]} \)

standard synchronous message-passing model of distributed computing

- undirected graph \(G = (V, E) \), n nodes, maximum degree \(\Delta \)
- each round, every node
 - receives messages (sent in previous round)
 - performs some computation
 - sends message to all its neighbors
- unbounded message size
- unbounded computation

\(\text{Round Complexity:} \)
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality
LOCAL Model *Linial [FOCS’87]*

standard synchronous message-passing model of distributed computing

- undirected graph $G = (V, E)$, n nodes, maximum degree Δ
- each round, every node
 - receives messages (sent in previous round)
 - performs some computation
 - sends message to all its neighbors
- unbounded message size
- unbounded computation

Round Complexity:
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality
LOCAL Model *Linial [FOCS’87]*

standard synchronous message-passing model of distributed computing

- undirected graph $G = (V, E)$, n nodes, maximum degree $Δ$
- each round, every node
 - receives messages (sent in previous round)
 - performs some computation
 - sends message to all its neighbors
- unbounded message size
- unbounded computation

Round Complexity:
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality
every problem is trivially solvable in $O(\text{diameter})$ rounds
Classic LOCAL Graph Problems
Classic LOCAL Graph Problems

Maximal Independent Set
Classic LOCAL Graph Problems

Maximal Independent Set

$(\Delta + 1)$-Vertex-Coloring
Classic LOCAL Graph Problems

Maximal Independent Set

$(\Delta + 1)$-Vertex-Coloring

Maximal Matching
Classic LOCAL Graph Problems

- **Maximal Independent Set**
- **(Δ + 1)-Vertex-Coloring**
- **Maximal Matching**
- **(2Δ − 1)-Edge-Coloring**
Classic LOCAL Graph Problems

- Maximal Independent Set
- $(\Delta + 1)$-Vertex-Coloring
- Maximal Matching
- $(2\Delta - 1)$-Edge-Coloring

Easy centralized problems: greedy solutions.
Maximal Matching
Maximal Matching
Maximal Matching
Maximal Matching

Matching:
set of non-incident edges
Maximal Matching

Matching:
set of non-incident edges

Maximal:
no edge can be added
Maximal Matching

Matching:
set of non-incident edges

Maximal:
no edge can be added

greedy property!
Centralized (Sequential) Algorithm
LOCAL Algorithm Mimicking Sequential Algorithm

can take Ω (diameter) rounds in worst case
LOCAL Algorithm Mimicking Sequential Algorithm

can take $\Omega(\text{diameter})$ rounds in worst case

Random Numbers:
$O(\log n)$ rounds w.h.p.
Luby [STOC’85]
F., Noever [SODA’18]
LOCAL Algorithm: Luby’s Randomized Algorithm

\[\mathbb{E}[\#\text{removed edges per round}] \geq c|E_i| \]
LOCAL Algorithm: Luby’s Randomized Algorithm

\[\mathbb{E}[\# \text{removed edges per round}] \geq c |E_i| \quad 0(\log n) \text{ rounds w.h.p.} \]
Our Result
Our Result

Deterministic $O(\log^2 \Delta \cdot \log n)$-round Maximal Matching
Our Result

deterministic $O(\log^2 \Delta \cdot \log n)$-round Maximal Matching

improving over
Our Result

\textbf{deterministic} \(O(\log^2 \Delta \cdot \log n)\)-round Maximal Matching improving over

\(O(\log^4 n)\)

Hańćkowiak, Karoński, Panconesi [SODA’98, PODC'99]
Our Result

deterministic $O(\log^2 \Delta \cdot \log n)$-round Maximal Matching improving over

$O(\log^4 n)$
Hańćkowiak, Karoński, Panconesi [SODA’98, PODC'99]

$O(\Delta + \log^* n)$
Panconesi, Rizzi [DIST’01]
Overview of Results

Maximal Matching
- Maximal Matching: $O(\log^2 \Delta \cdot \log n)$
- Randomized Maximal Matching: $O(\log^3 \log n + \log \Delta)$

Approximate Matching
- $(2 + \varepsilon)$ - Approximate Maximum Matching: $O\left(\log^2 \Delta \cdot \log \frac{1}{\varepsilon} + \log^* n\right)$
- $(2 + \varepsilon)$ - Approximate Maximum Weighted Matching: $O\left(\log^2 \Delta \cdot \log \frac{1}{\varepsilon} + \log^* n\right)$
- $(2 + \varepsilon)$ - Approximate Maximum B-Matching: $O\left(\log^2 \Delta \cdot \log \frac{1}{\varepsilon} + \log^* n\right)$
- $(2 + \varepsilon)$ - Approximate Maximum Weighted B-Matching: $O\left(\log^2 \Delta \cdot \log \frac{1}{\varepsilon} + \log^* n\right)$
- ε - Maximal Matching: $O\left(\log^2 \Delta \cdot \log \frac{1}{\varepsilon}\right)$
- $(2 + \varepsilon)$ - Approximate Minimum Edge Dominating Set: $O\left(\log^2 \Delta \cdot \log \frac{1}{\varepsilon}\right)$
| Constant - Approximate Bipartite Matching | $O(\log^2 \Delta)$ rounds |
Constant - Approximate Bipartite Matching

$O(\log^2 \Delta)$ rounds
| Constant - Approximate Bipartite Matching | $O(\log^2 \Delta)$ rounds |
I) 4 - Approximate Fractional Matching

$O(\log \Delta)$ rounds
I) 4 - Approximate Fractional Matching
 $O(\log \Delta)$ rounds

II) Rounding Fractional Bipartite Matching
 $O(\log^2 \Delta)$ rounds, $O(1)$ loss
1) 4-Approximate Fractional Matching $O(\log \Delta)$ rounds
1) 4-Approximate Fractional Matching

\[\max_{\substack{x_e \in [0,1] \quad \text{for all } e \in E}} \sum_{e \in E} x_e \]

s.t.
\[\sum_{e \in E(v)} x_e \leq 1 \quad \text{for all } v \in V \]

\[x_e \in [0,1] \quad \text{for all } e \in E \]
I) 4-Approximate Fractional Matching

\[
\max \sum_{e \in E} x_e \quad \text{value of } \nu
\]

\[
\text{s.t. } \sum_{e \in E(v)} x_e \leq 1 \quad \text{for all } \nu \in V
\]

\[
x_e \in [0,1] \quad \text{for all } e \in E
\]

\[O(\log \Delta)\] rounds
I) 4-Approximate Fractional Matching \[O(\log \Delta) \text{ rounds} \]

Fractional Maximum Matching

\[
\max \sum_{e \in E} x_e \quad \text{value of } v \\
\text{s.t. } \sum_{e \in E(v)} x_e \leq 1 \quad \text{for all } v \in V \\
x_e \in [0,1] \quad \text{for all } e \in E
\]

LOCAL Greedy Algorithm

\[
x_e = 2^{-\lceil \log \Delta \rceil} \quad \text{for all } e \in E
\]

repeat until all edges are blocked

- mark half-tight nodes
- block its edges
- double value of unblocked edges
I) 4-Approximate Fractional Matching

Fractional Maximum Matching

\[
\text{Fractional Maximum Matching} = \max \sum_{e \in E} x_e \text{ value of } v
\]

s.t.

\[
\sum_{e \in E(v)} x_e \leq 1 \quad \text{for all } v \in V
\]

\[
x_e \in [0,1] \quad \text{for all } e \in E
\]

LOCAL Greedy Algorithm

\[
x_e = 2^{-\lceil \log \Delta \rceil} \text{ for all } e \in E
\]

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

\[O(\log \Delta)\] rounds
I) 4-Approximate Fractional Matching

Fractional Maximum Matching

\[
\max \sum_{e \in E} x_e \quad \text{value of } v
\]

s.t.

\[
\sum_{e \in E(v)} x_e \leq 1 \quad \text{for all } v \in V
\]

\[
x_e \in [0,1] \quad \text{for all } e \in E
\]

LOCAL Greedy Algorithm

\[x_e = 2^{-[\log \Delta]} \text{ for all } e \in E\]

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

\[O(\log \Delta) \text{ rounds}\]
I) 4-Approximate Fractional Matching

\[\text{Fractional Maximum Matching} \]

\[
\max \sum_{e \in E} x_e \quad \text{value of } v
\]

s.t. \[
\sum_{e \in E(v)} x_e \leq 1 \quad \text{for all } v \in V
\]

\[
x_e \in [0,1] \quad \text{for all } e \in E
\]

\[v \text{ is half-tight if its value is } \geq \frac{1}{2} \]

\[\text{LOCAL Greedy Algorithm} \]

\[
x_e = 2^{-\lceil \log \Delta \rceil} \text{ for all } e \in E
\]

repeat until all edges are blocked
mark half-tight nodes
block its edges
double value of unblocked edges

\[O(\log \Delta) \text{ rounds} \]
I) 4-Approximate Fractional Matching

\[\frac{1}{16} \]

Fractional Maximum Matching

\[\max \sum_{e \in E} x_e \]

\[\text{value of } v \]

s.t.

\[\sum_{e \in \delta(v)} x_e \leq 1 \quad \text{for all } v \in V \]

\[x_e \in [0,1] \quad \text{for all } e \in E \]

\(v \) is half-tight if its value is \(\geq \frac{1}{2} \)

LOCAL Greedy Algorithm

\[x_e = 2^{-[\log \Delta]} \quad \text{for all } e \in E \]

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

\(O(\log \Delta) \) rounds
I) 4-Approximate Fractional Matching

\[\text{Fractional Maximum Matching} \]

\[
\begin{align*}
\max \sum_{e \in E} x_e & \quad \text{value of } v \\
\text{s.t.} \sum_{e \in E(v)} x_e & \leq 1 \quad \text{for all } v \in V \\
x_e & \in [0,1] \quad \text{for all } e \in E
\end{align*}
\]

\(v \) is half-tight if its value is \(\geq \frac{1}{2} \)

\[\text{LOCAL Greedy Algorithm} \]

\[x_e = 2^{-\lceil \log \Delta \rceil} \text{ for all } e \in E \]

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges
I) 4-Approximate Fractional Matching

Fractional Maximum Matching

\[
\max_{e \in E} \sum_{e \in E} x_e
\]

subject to:

\[
\sum_{e \in E(v)} x_e \leq 1 \quad \text{for all } v \in V
\]

\[
x_e \in [0,1] \quad \text{for all } e \in E
\]

\(v\) is half-tight if its value is \(\geq \frac{1}{2}\)

LOCAL Greedy Algorithm

\[
x_e = 2^{-\lceil \log \Delta \rceil} \quad \text{for all } e \in E
\]

repeat until all edges are blocked

- mark half-tight nodes
- block its edges
- double value of unblocked edges

\(O(\log \Delta)\) rounds
I) 4-Approximate Fractional Matching

Fractional Maximum Matching

\[
\max \sum_{e \in E} x_e
\]

s.t.

\[
\sum_{e \in E(v)} x_e \leq 1 \quad \text{for all } v \in V
\]

\[
x_e \in [0,1] \quad \text{for all } e \in E
\]

\[v \text{ is half-tight if its value is } \geq \frac{1}{2}\]

LOCAL Greedy Algorithm

\[x_e = 2^{-\lceil \log \Delta \rceil} \text{ for all } e \in E\]

repeat until all edges are blocked

- mark half-tight nodes
- block its edges
- double value of unblocked edges

\[O(\log \Delta) \text{ rounds}\]
1) 4-Approximate Fractional Matching

Fractional Maximum Matching

\[
\max \sum_{e \in E} x_e \quad \text{value of } v
\]

s.t.

\[
\sum_{e \in E(v)} x_e \leq 1 \quad \text{for all } v \in V
\]

\[
x_e \in [0,1] \quad \text{for all } e \in E
\]

\[v \text{ is half-tight if its value is } \geq \frac{1}{2}\]

LOCAL Greedy Algorithm

\[x_e = 2^{-\lfloor \log \Delta \rfloor} \text{ for all } e \in E\]

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges

\[O(\log \Delta) \text{ rounds}\]
1) 4-Approximate Fractional Matching

$O(\log \Delta)$ rounds

Fractional Maximum Matching

$$\max \sum_{e \in E} x_e$$

value of v

s.t. $$\sum_{e \in E(v)} x_e \leq 1 \quad \text{for all } v \in V$$

$$x_e \in [0,1] \quad \text{for all } e \in E$$

v is half-tight if its value is $\geq \frac{1}{2}$

LOCAL Greedy Algorithm

$$x_e = 2^{-[\log \Delta]} \text{ for all } e \in E$$

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges
I) 4-Approximate Fractional Matching

\[\text{Fractional Maximum Matching} \]
\[
\max \sum_{e \in E} x_e \\
\text{s.t.} \sum_{e \in E(v)} x_e \leq 1 \quad \text{for all } v \in V \\
x_e \in [0,1] \quad \text{for all } e \in E
\]

\(v \) is half-tight if its value is \(\geq \frac{1}{2} \)

\[\text{LOCAL Greedy Algorithm} \]
\[x_e = 2^{-\lceil \log \Delta \rceil} \quad \text{for all } e \in E \]
repeat until all edges are blocked
mark half-tight nodes
block its edges
double value of unblocked edges

\(O(\log \Delta) \) rounds
I) 4-Approximate Fractional Matching

Fractional Maximum Matching

\[
\max \sum_{e \in E} x_e
\]

subject to

\[
\sum_{e \in E(v)} x_e \leq 1 \quad \text{for all } v \in V
\]

\[
x_e \in [0,1] \quad \text{for all } e \in E
\]

\(v\) is half-tight if its value is \(\geq \frac{1}{2}\)

LOCAL Greedy Algorithm

\[
x_e = 2^{-\lceil \log \Delta \rceil} \quad \text{for all } e \in E
\]

repeat until all edges are blocked

mark half-tight nodes

block its edges

double value of unblocked edges
I) 4-Approximate Fractional Matching
 $O(\log \Delta)$ rounds

II) Rounding Fractional Bipartite Matching
 $O(\log^2 \Delta)$ rounds, $O(1)$ loss
II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss
II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss
II) Rounding Fractional Bipartite Matching

\(O(\log^2 \Delta) \) rounds, \(O(1) \) loss
II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss

Direct Rounding

$\Omega \left(\frac{1}{\Delta} \right)$

Gradual Rounding

$O(\log \Delta)$ iterations
II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss

Factor-2-Rounding

$\geq \frac{1}{d}$ \Rightarrow $\geq \frac{2}{d}$

Direct Rounding $\Omega\left(\frac{1}{\Delta}\right)$ 1

Gradual Rounding $0(\log \Delta)$ iterations
II) Rounding Fractional Bipartite Matching

\[O(\log^2 \Delta) \text{ rounds, } O(1) \text{ loss} \]

Factor-2-Rounding

\[\geq \frac{1}{d} \quad \Rightarrow \quad \geq \frac{2}{d} \]

using Locally Balanced Splitting, inspired by

Hańćkowiak, Karoński, Panconesi [SODA’98, PODC’99]

Direct Rounding

\[\Omega\left(\frac{1}{\Delta}\right) \]

Gradual Rounding

\[0(\log \Delta) \text{ iterations} \]
| II) Rounding Fractional Bipartite Matching | $O(\log^2 \Delta)$ rounds, $O(1)$ loss |

Iterated Factor-2-Rounding using Locally Balanced Splitting
II) Rounding Fractional Bipartite Matching

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

$O(\log^2 \Delta)$ rounds, $O(1)$ loss
Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that every node roughly balanced

II) Rounding Fractional Bipartite Matching

\[O(\log^2 \Delta) \text{ rounds, } O(1) \text{ loss} \]
II) Rounding Fractional Bipartite Matching

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that every node roughly balanced

$O(\log^2 \Delta)$ rounds, $O(1)$ loss
Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that every node roughly balanced

Iterated Factor-2-Rounding
for $i = \lceil \log \Delta \rceil, \ldots, 1$

$E_i = \{ e \in E : x_e = 2^{-i} \}$

splitting of E_i into

increase to 2^{-i+1}

decrease to 0

II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss
II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that every node roughly balanced

Iterated Factor-2-Rounding

for $i = \lceil \log \Delta \rceil, \ldots, 1$

$E_i = \{ e \in E : x_e = 2^{-i} \}$

splitting of E_i into

increase to 2^{-i+1}

decrease to 0
II) Rounding Fractional Bipartite Matching

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that every node roughly balanced

Iterated Factor-2-Rounding
for $i = \lfloor \log \Delta \rfloor, \ldots, 1$

$$E_i = \{ e \in E : x_e = 2^{-i} \}$$

splitting of E_i into
increase to $2^{-(i+1)}$
decrease to 0

$O(\log^2 \Delta)$ rounds, $O(1)$ loss
II) Rounding Fractional Bipartite Matching

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that every node roughly balanced

Iterated Factor-2-Rounding

for $i = \lceil \log \Delta \rceil, \ldots, 1$

$$E_i = \{ e \in E : x_e = 2^{-i} \}$$

splitting of E_i into increase to 2^{-i+1}
decrease to 0

In case of **perfect locally balanced splitting**: no constraint violated & no loss in total value (i.e., **perfect rouding**)

$\mathcal{O}(\log^2 \Delta)$ rounds, $\mathcal{O}(1)$ loss
II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that every node roughly balanced

Iterated Factor-2-Rounding
for $i = \lfloor \log \Delta \rfloor, \ldots, 1$

$E_i = \{ e \in E : x_e = 2^{-i} \}$

splitting of E_i into
increase to 2^{-i+1}
decrease to 0

In case of **perfect** locally balanced splitting:
no constraint violated & no loss in total value
(i.e., **perfect rounding**)
II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that every node roughly balanced

Iterated Factor-2-Rounding
for $i = [\log \Delta], \ldots, 1$

$E_i = \{ e \in E : x_e = 2^{-i} \}$

splitting of E_i into

increase to 2^{-i+1}

decrease to 0

In case of **perfect** locally balanced **splitting:**
no constraint violated & no loss in total value
(i.e., **perfect rounding**)
Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that every node roughly balanced

Iterated Factor-2-Rounding
for $i = \lceil \log \Delta \rceil, \ldots, 1$

$E_i = \{ e \in E : x_e = 2^{-i} \}$

splitting of E_i into

increase to 2^{-i+1}

decrease to 0

In case of **perfect** locally balanced splitting: no constraint violated & no loss in total value (i.e., **perfect rounding**)
II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that every node roughly balanced

Iterated Factor-2-Rounding

for $i = \lfloor \log \Delta \rfloor, \ldots, 1$

$E_i = \{ e \in E : x_e = 2^{-i} \}$

splitting of E_i into

increase to 2^{-i+1}

decrease to 0

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rounding)
II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that every node roughly balanced

Iterated Factor-2-Rounding
for $i = \lceil \log \Delta \rceil, \ldots, 1$

$E_i = \{ e \in E : x_e = 2^{-i} \}$

splitting of E_i into

increase to 2^{-i+1}

decrease to 0

In case of **perfect** locally balanced **splitting**:
no constraint violated & no loss in total value
(i.e., **perfect rounding**)
Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that every node roughly balanced

Iterated Factor-2-Rounding
for $i = \lfloor \log \Delta \rfloor, \ldots, 1$

$E_i = \{ e \in E : x_e = 2^{-i} \}$

splitting of E_i into

increase to 2^{-i+1}
decrease to 0

In case of **perfect** locally balanced splitting:
no constraint violated & no loss in total value
(i.e., **perfect rouding**)
II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that every node roughly balanced

Iterated Factor-2-Rounding
for $i = \lceil \log \Delta \rceil, \ldots, 1$

$$E_i = \{ e \in E : x_e = 2^{-i} \}$$

splitting of E_i into

increase to 2^{-i+1}

decrease to 0

In case of **perfect** locally balanced **splitting:**
no constraint violated & no loss in total value
(i.e., **perfect rouding**)
Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that every node roughly balanced

Iterated Factor-2-Rounding

for \(i = \lceil \log \Delta \rceil, \ldots, 1 \)

\[
E_i = \{ e \in E : x_e = 2^{-i} \}
\]

splitting of \(E_i \) into

increase to \(2^{-i+1} \)

decrease to 0

In case of **perfect** locally balanced splitting: no constraint violated & no loss in total value (i.e., **perfect rounding**)

II) Rounding Fractional Bipartite Matching

\(O(\log^2 \Delta) \) rounds, \(O(1) \) loss
II) Rounding Fractional Bipartite Matching

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that every node roughly balanced

Iterated Factor-2-Rounding
for $i = [\log \Delta], \ldots, 1$
$E_i = \{ e \in E : x_e = 2^{-i} \}$
splitting of E_i into
increase to 2^{-i+1}
decrease to 0

In case of perfect locally balanced splitting: no constraint violated & no loss in total value (i.e., perfect rounding)

$O(\log^2 \Delta)$ rounds, $O(1)$ loss
Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that every node roughly balanced

Iterated Factor-2-Rounding

for $i = \lceil \log \Delta \rceil, \ldots, 1$

$E_i = \{ e \in E : x_e = 2^{-i} \}$

splitting of E_i into

increase \square to 2^{-i+1}

decrease \square to 0

In case of **perfect** locally balanced **splitting:**
no constraint violated & no loss in total value
(i.e., **perfect rouding**)

II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss
Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that every node roughly balanced

Iterated Factor-2-Rounding
for $i = \lceil \log \Delta \rceil, \ldots, 1$

$E_i = \{ e \in E : x_e = 2^{-i} \}$

splitting of E_i into

increase to 2^{-i+1}

decrease to 0

In case of **perfect** locally balanced **splitting:**
no constraint violated & no loss in total value
(i.e., perfect rounding)
II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that every node roughly balanced

Iterated Factor-2-Rounding
for $i = [\log \Delta], \ldots, 1$

$E_i = \{e \in E : x_e = 2^{-i}\}$
splitting of E_i into
increase x_e to 2^{-i+1}
decrease x_e to 0

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rounding)
| II) Rounding Fractional Bipartite Matching | $O(\log^2 \Delta)$ rounds, $O(1)$ loss |
II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss

Perfect Splitting not possible in case of...
II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss

Perfect Splitting not possible in case of...

... odd cycles
II) Rounding Fractional Bipartite Matching

Perfect Splitting not possible in case of...

... odd cycles

bipartite graph!

$O(\log^2 \Delta)$ rounds, $O(1)$ loss
II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss

Perfect Splitting not possible in case of...

- odd cycles
- odd-degree vertices

bipartite graph!
II) Rounding Fractional Bipartite Matching

\[O(\log^2 \Delta) \text{ rounds, } O(1) \text{ loss} \]

Perfect Splitting not possible in case of...

... odd cycles

... odd-degree vertices

bipartite graph!

small technicality.
II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss

Perfect Splitting not possible in case of...

... odd cycles

bipartite graph!

... odd-degree vertices

small technicality.

Suppose that bipartite and even degree!
II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss

Sequential Perfect Splitting

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!
II) Rounding Fractional Bipartite Matching

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!
II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss

Sequential Perfect Splitting

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!
II) Rounding Fractional Bipartite Matching

\[O(\log^2 \Delta) \text{ rounds, } O(1) \text{ loss} \]

Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!
II) Rounding Fractional Bipartite Matching

Sequential Perfect Splitting*
Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!
II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss

Sequential Perfect Splitting*
Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!
II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss

Sequential Perfect Splitting
Repeat until all edges colored
pick arbitrary cycle
alternate

* bipartite and even degree!
II) Rounding Fractional Bipartite Matching

* Sequential Perfect Splitting*

Repeat until all edges colored
pick arbitrary cycle
alternate

* LOCAL Almost-Perfect Splitting*

Decompose into edge-disjoint cycles
In parallel, for all cycles
A) **Short cycles** of length $O(\log \Delta)$
 alternate
B) **Long cycles**
 chop at length $\Theta(\log \Delta)$
 set boundary to 0
 alternate in between

* bipartite and even degree!
II) Rounding Fractional Bipartite Matching

Sequential Perfect Splitting*
Repeat until all edges colored
pick arbitrary cycle
alternate

LOCAL Almost-Perfect Splitting*
Decompose into edge-disjoint cycles
In parallel, for all cycles
A) Short cycles of length $O(\log \Delta)$
 alternate
B) Long cycles
 chop at length $\Theta(\log \Delta)$
 set boundary to 0
 alternate
 in between

*$\text{bipartite and even degree!}$
II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss

Sequential Perfect Splitting*
Repeat until all edges colored
pick arbitrary cycle
alternate

LOCAL Almost-Perfect Splitting*
Decompose into edge-disjoint cycles
In parallel, for all cycles
A) Short cycles of length $O(\log \Delta)$
 alternate
B) Long cycles
 chop at length $\Theta(\log \Delta)$
 set boundary to 0
 alternate in between

* bipartite and even degree!
II) Rounding Fractional Bipartite Matching

Sequential Perfect Splitting*
Repeat until all edges colored
pick arbitrary cycle
alternate

LOCAL Almost-Perfect Splitting*
Decompose into edge-disjoint cycles
In parallel, for all cycles
A) *Short cycles* of length $O(\log \Delta)$
 alternate
B) *Long cycles*
 chop at length $\Theta(\log \Delta)$
 set boundary to 0
 alternate in between

$O(\log^2 \Delta)$ rounds, $O(1)$ loss

* bipartite and even degree!
II) Rounding Fractional Bipartite Matching

Sequential Perfect Splitting
Repeat until all edges colored
pick arbitrary cycle
alternate

LOCAL Almost-Perfect Splitting
Decompose into edge-disjoint cycles
In parallel, for all cycles

A) **Short cycles** of length $O(\log \Delta)$
 alternate

B) **Long cycles**
 chop at length $\Theta(\log \Delta)$
 set boundary to 0
 alternate in between

* bipartite and even degree!
II) Rounding Fractional Bipartite Matching

Sequential Perfect Splitting*
Repeat until all edges colored
pick arbitrary cycle
alternate

LOCAL Almost-Perfect Splitting*
Decompose into edge-disjoint cycles
In parallel, for all cycles
A) **Short cycles** of length $O(\log \Delta)$
 alternate
B) **Long cycles**
 chop at length $\Theta(\log \Delta)$
 set boundary to 0
 alternate

* bipartite and even degree!
II) Rounding Fractional Bipartite Matching

$O(\log^2 \Delta)$ rounds, $O(1)$ loss

Sequential Perfect Splitting
Repeat until all edges colored
pick arbitrary cycle
alternate

LOCAL Almost-Perfect Splitting
Decompose into edge-disjoint cycles
In parallel, for all cycles
A) **Short cycles** of length $O(\log \Delta)$
 alternate
B) **Long cycles**
 chop at length $\Theta(\log \Delta)$
 set boundary to 0
 alternate in between

* bipartite and even degree!
II) Rounding Fractional Bipartite Matching

- **Sequential Perfect Splitting**
 - Repeat until all edges colored
 - Pick arbitrary cycle
 - Alternate

- **LOCAL Almost-Perfect Splitting**
 - Decompose into edge-disjoint cycles
 - In parallel, for all cycles
 - **A)** Short cycles of length $O(\log \Delta)$
 - Alternate
 - **B)** Long cycles
 - Chop at length $\Theta(\log \Delta)$
 - Set boundary to 0
 - Alternate

* bipartite and even degree!
II) Rounding Fractional Bipartite Matching

Sequential Perfect Splitting*
Repeat until all edges colored
pick arbitrary cycle
alternate

LOCAL Almost-Perfect Splitting*
Decompose into edge-disjoint cycles
In parallel, for all cycles
A) Short cycles of length $O(\log \Delta)$
 alternate
B) Long cycles
 chop at length $\Theta(\log \Delta)$
 set boundary to 0
 alternate in between

* bipartite and even degree!
II) Rounding Fractional Bipartite Matching

Sequential Perfect Splitting
Repeat until all edges colored
pick arbitrary cycle
alternate

LOCAL Almost-Perfect Splitting
Decompose into edge-disjoint cycles
In parallel, for all cycles
A) **Short cycles** of length $O(\log \Delta)$
 alternate
B) **Long cycles**
 chop at length $\Theta(\log \Delta)$
 set boundary to 0
 alternate

* bipartite and even degree!
II) Rounding Fractional Bipartite Matching

\[O(\log^2 \Delta) \text{ rounds, } O(1) \text{ loss} \]

Sequential Perfect Splitting*
Repeat until all edges colored
pick arbitrary cycle
alternate

LOCAL Almost-Perfect Splitting*
Decompose into edge-disjoint cycles
In parallel, for all cycles
A) **Short cycles** of length \(O(\log \Delta) \)
alternate

B) **Long cycles**
chop at length \(\Theta(\log \Delta) \)
set boundary to 0
alternate

\[\Theta \left(\frac{1}{\log \Delta} \right) \text{ loss} \]
in between

* bipartite and even degree!
II) Rounding Fractional Bipartite Matching

Sequential Perfect Splitting
Repeat until all edges colored
pick arbitrary cycle
alternate

LOCAL Almost-Perfect Splitting
Decompose into edge-disjoint cycles
In parallel, for all cycles
A) **Short cycles** of length $O(\log \Delta)$
 alternate
B) **Long cycles**
 chop at length $\Theta(\log \Delta)$
 set boundary to 0
 alternate

*$\Theta\left(\frac{1}{\log \Delta}\right)$ loss

* by Hańckowiak, Karoński, Panconesi [SODA’98,PODC’99] in $O(\log \Delta)$

* bipartite and even degree!
II) Rounding Fractional Bipartite Matching

Sequential Perfect Splitting
Repeat until all edges colored
pick arbitrary cycle
alternate

LOCAL Almost-Perfect Splitting
Decompose into edge-disjoint cycles
In parallel, for all cycles
A) **Short cycles** of length $O(\log \Delta)$
 alternate
B) **Long cycles**
 chop at length $\Theta(\log \Delta)$
 set boundary to 0
 alternate

Over all $O(\log \Delta)$ rounding iterations, total loss still constant!

* by Hańćkowiak, Karoński, Panconesi [SODA’98,PODC’99] in $O(\log \Delta)$

* bipartite and even degree!
I) 4-Approximate Fractional Matching
 $O(\log \Delta)$ rounds

II) Rounding Fractional Bipartite Matching
 $O(\log^2 \Delta)$ rounds, $O(1)$ loss
| Constant - Approximate Bipartite Matching | $O(\log^2 \Delta)$ rounds |
Constant - Approximate Bipartite Matching \[O(\log^2 \Delta) \] rounds
Constant - Approximate Bipartite Matching

$O(\log^2 \Delta)$ rounds
Constant - Approximate Bipartite Matching

$O(\log^2 \Delta)$ rounds
Constant - Approximate Bipartite Matching

$O(\log^2 \Delta)$ rounds

![Diagram showing the process of approximate bipartite matching with $O(\log^2 \Delta)$ rounds.](image-url)
Constant - Approximate Bipartite Matching

\[O(\log^2 \Delta) \text{ rounds} \]
Constant - Approximate Bipartite Matching

$O(\log^2 \Delta)$ rounds

Maximal Matching in Degree-2-Graph

$O(1)$ rounds, $O(1)$-factor loss

Panconesi, Rizzi [DIST'01]

Constant-Approximate Bipartite Matching

$O(\log^2 \Delta)$ rounds
<table>
<thead>
<tr>
<th>Constant - Approximate Matching</th>
<th>(O(\log^2 \Delta)) rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximal</td>
<td>(O(\log^2 \Delta \cdot \log n))</td>
</tr>
</tbody>
</table>
Constant - Approximate Matching

Maximal

$O \left(\log^2 \Delta \right)$ rounds

$O \left(\log^2 \Delta \cdot \log n \right)$
Constant - Approximate Matching

Maximal

$O(\log^2 \Delta \cdot \log n)$
Constant - Approximate Matching

Maximal

$O(\log^2 \Delta) \text{ rounds}$

$O(\log^2 \Delta \cdot \log n)$
Constant - Approximate Matching

Maximal

$O(\log^2 \Delta \cdot \log n)$
Constant - Approximate Matching

Maximal

$O(\log^2 \Delta \cdot \log n)$
Constant - Approximate Matching

Maximal

\(O(\log^2 \Delta \cdot \log n) \)
Constant - Approximate Matching

Maximal

$O(\log^2 \Delta \cdot \log n)$

$O(\log^2 \Delta)$ rounds
Constant - Approximate Matching

Maximal

$O(\log^2 \Delta \cdot \log n)$
Constant - Approximate Matching

Maximal

\[O(\log^2 \Delta \cdot \log n) \]

maximum matching size in remainder graph decreases by constant factor
Constant - Approximate Matching

Maximal

\[O(\log^2 \Delta \cdot \log n) \]

maximum matching size in remainder graph decreases by constant factor

after \(O(\log n) \) iterations, maximum matching size is 0, hence graph empty
Open Question: $\Theta(\log \Delta \cdot \log n)$?

What is Locality of Maximal Matching?
Open Question: $O(\log \Delta \cdot \log n)$?

What is Locality of Maximal Matching?