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Traditional Computer Vision

• Hand-crafted image features, meaning that specific filters or 
feature detectors are designed based on the task.

SIFT descriptor

Medium Blogpost [1]
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Deep Neural Networks

• Multilayer perceptrons

• Convolutional Neural Networks

• Attention-based Neural Networks
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Multilayer perceptrons (MLPs)

Yann LeCun et al. [14]

1989 - Backpropagation Applied to Handwritten Zip Code Recognition



Convolutional Neural Networks (CNNs)
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Convolutional Neural Networks (CNNs)
• Features are learnt directly from data through convolutions.
• CNNs bring inductive biases (hierarchical structure, local 

connectivity, parameter sharing, translation equivariance, etc).

TowardsDataScience Blogpost [2]
Zeiler & Fergus [3]



Attention-based Networks
• Features are learnt directly from data through self-attention.
• Bring fewer inductive biases compared to CNNs (global receptive

field, lesser spatial bias, etc).

Dosovitskiy et al. [4]



Mixer architecture
Modern deep vision architectures consist of layers that mix features

• between channels

• between spatial locations

or both at once.



Mixer architecture

CHANNELS SPATIAL LOCATIONS

CNNs

ViTs

MLP block

Self-attention Self-attention

Medium Blogpost [5]
Dosovitskiy et al. [4]



Mixer architecture

Tolstikhin et al. [6]



Gaussian Error Linear Unit - GELU

Weights & Biases Blogpost [7]

𝐺𝐸𝐿𝑈 𝑥 = 𝑥𝑃 𝑋 ≤ 𝑥 = 𝑥Φ(𝑥)
𝑋~𝒩(0,1)



Mixer architecture

Weights & Biases Blogpost [7]

same as Vision Transformers 
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Mixer architecture

Weights & Biases Blogpost [7]
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Experiments
Evaluate according to three primary quantities:

1.  Accuracy on the downstream task
2.  Total computation cost of pre-training
3.  Test-time throughput

Our goal is not to demonstrate state-of-the-art results, but to show 
that, remarkably, a simple MLP-based model is competitive with 
today’s best convolutional and attention-based models. 



Specifications of the Mixer architectures

Tolstikhin et al. [6]



Main results

Tolstikhin et al. [6]
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Main results
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Invariance to input permutation

Tolstikhin et al. [6]



Visualization

Tolstikhin et al. [6]
Shang et al. [10]

MLP-mixer

AlexNet



Visualization

Tolstikhin et al. [6]

Linear projection units of the embedding layer for Mixer-B/16 (Top) and Mixer-B/32 (Bottom) 
models pre-trained on JFT-300M.



Conclusions

Tolstikhin et al. [6]

• Very simple architecture for vision
• As good as existing state-of-the-art methods in terms of trade-off between

accuracy and computational resources required for training and inference
• Open questions:
o Practical side: study the features learnt by the model and identify the main

differences from those learnt by CNNs and Transformers.
o Theoretical side: understand the inductive biases hidden in these various

features and their role.
• It would be interesting to see whether such a design works in NLP or other

domains.



Conclusions – similar architectures

He et al. [11]
Tan et al. [12]

ResNet-34

EfficientNet-B0



Conclusions – similar architectures

He et al. [11]
Tan et al. [12]

ResNet-34

EfficientNet-B0



Conclusions – similar architectures

Fusco et al. [13]



Conclusions – closing the circle

MLPs

CNNsTransformers



Thank you!



MLP-mixer code

Tolstikhin et al. [6]



Convolutional Neural Networks (CNNs)

• 2012 – AlexNet
• 2015 – State-of-the-art model using convolutions with small 3x3 kernels
• 2016 – Skip-connections and batch-normalization enabled very deep NNs
• 2016 – Sparse convolutions together with depth-wise variants
• 2018 – Augment CNNs with non-local operations
• 2019 – Shared parameters in depth-wise convolutions for NLP

brought to extreme
using dense matrix
multiplication

matrix multiplications are applied
row-wise or column-wise on the 
‘patches x features’ input table



Attention-based Networks

𝑌 = 𝑊𝑋𝐴$Y



Computation cost

Tolstikhin et al. [6]
Vaswani et al. [8]

MLP-mixer Vision Transformer

𝑋 ∈ ℝ!×ℝ"
‘patches x features’ matrix

𝑊# ∈ ℝ$!×!
𝑊& ∈ ℝ!×$!

𝑊' ∈ ℝ$"×"

𝑊( ∈ ℝℝ
"×$%

Total cost: linear in #input_pixels

𝑄 ∈ ℝ"×!
𝐾 ∈ ℝ"×!
𝑊 ∈ ℝ*×!

𝑌+ =-
!

𝑎+,-𝑊𝑥+

Feed Forward Network: 𝑌 = 𝑊𝑋𝐴.

Total cost: quadratic in #input_pixels
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