
Chapter 14

Global Problems III

In the last chapter, we saw a near-optimal algorithm running in time Õ(D+
√
n),

where Õ hides poly(log n) factors.
In this chapter we will first show that this bound is essentially optimal by

constructing a worst-case graph instance: the Peleg–Rubinovich graph [PR00],
for which any distributed algorithm requires Ω̃(D+

√
n) time to solve essentially

any global verification problem, including MST, shortest paths, and related
tasks.

14.1 The Peleg-Rubinovich Graph

Construction: See Figure 14.1. There are
√
n paths of length

√
n. Alice and

Bob connect to the first and last nodes on each path, respectively (with labels
ai, bi on those edges). Above, a complete binary tree of depth O(log n) with

√
n

leaves; the ith leaf connects to each ith edge of every path.

Lemma 14.2. The Peleg-Rubinovich graph has O(n) nodes and diameter O(log n).

To set up edge costs, assign every path-internal edge cost 0 except the edges
from Alice (cost ai) and to Bob (cost bi). All tree edges and all leaf-to-path
connections carry cost n2. Finally, each ai and bi is restricted to be either 0 or
1. Suppose that each node initially knows its neighbors and the costs of incident
edges.

Lemma 14.3. Any distributed algorithm that decides whether there is a zero-
cost path from Alice to Bob in the Peleg–Rubinovich graph also solves the set-
disjointness problem for

A = {i | ai = 0}, B = {i | bi = 0}.

Proof. (⇒) If A ∩B ̸= ∅, choose i ∈ A ∩B. Then ai = bi = 0, and all internal
edges on path i cost 0, so the total cost of that path is

ai + 0 ·√n+ bi = 0.

Hence a zero-cost path exists.

157

158 CHAPTER 14. GLOBAL PROBLEMS III

Alice Bob
a1 b1

a2 b2

a3 b3

.

a√n b√n

Figure 14.1: The Peleg-Rubinovich graph.

(⇐) Conversely, any path from Alice to Bob must use exactly one Alice-edge
ai and one Bob-edge bi, and all other edges have cost at least n2 > 0.
Thus the total cost is zero only if ai = bi = 0, i.e. i ∈ A∩B, so A∩B ̸= ∅.

Lemma 14.4. Any distributed algorithm by which every node learns the cost of
the MST in the Peleg–Rubinovich graph also solves set-disjointness for

A = {i | ai = 0}, B = {i | bi = 0}.

Proof sketch. Knowing the MST cost also means we know the cost modulo n2,
effectively ignoring all edges of cost n2. Let P = {Alice,Bob, all paths}. Since
every edge outside P has cost n2, the MST of the induced subgraph G[P] coin-
cides with the restriction of the global MST to P . Thus

MST(G) mod n2 = 0

if and only if there is a 0-cost path from Alice to Bob. By Lemma 14.3, deciding
this solves disjointness on A,B.

Note. The same lower bound holds even if nodes only need to learn which of
their incident edges lie in the MST (rather than its cost); one can modify the
graph slightly to enforce that knowledge of membership implies knowledge of
the 0-cost path, but the construction becomes more technical.

14.2. MOVING CUTS 159

14.2 Moving cuts

The previous section has shown us that solving the set disjointness problem
in Peleg–Rubinovich graphs is necessary to solve MST with a distributed algo-
rithm. In this section we prove that doing so requires Ω̃(D +

√
n) = Ω̃(

√
n)

rounds.
From communication complexity we know that any protocol for set disjoint-

ness between Alice and Bob must exchange Ω(n) bits. Intuitively, one could
pipeline these bits along the

√
n-length paths, but that incurs Θ(

√
n) rounds of

latency despite high throughput. Alternatively, one could route bits through the
binary tree—which has small diameter—but then to go from Alice to Bob the
bits must climb to high levels of the tree where only few edges exist, creating a
congestion bottleneck. Thus the tree offers low latency but limited throughput.
We argue this by introducing the notion of moving cuts.

Definition 14.5 (Moving cut). Let G = (V,E) be a graph with two distinguished
nodes a, b (Alice and Bob). A moving cut is an assignment ℓ : E → Z≥0. We say
ℓ has capacity C =

P
e∈E ℓe and distance T if d1+ℓ(a, b) ≥ T , where d1+ℓ(x, y)

denotes the shortest-path distance from x to y when each edge e has cost 1+ℓ(e).

Note. Intuitively, all edges start with cost 1. The assignment ℓ raises the
cost of each edge e to 1 + ℓ(e), and the capacity C is the total amount of these
cost-increases. We seek the smallest total increase so that there are no short
paths between Alice and Bob (of cost less than T).

A moving cut of capacity C shows that one cannot communicate a lot of
information from Alice to Bob in a short amount of time. The next theorem
formalizes this.

Theorem 14.6 (Bandwidth–Latency). Let G = (V,E) be a graph where each
edge carries B bits of information per round, and let a, b ∈ V be distinguished
nodes (Alice and Bob). Suppose ℓ : E → Z≥0 is a moving-cut of capacity C
and distance T between a, b. Then any distributed protocol that completes in at
most T − 1 rounds can communicate at most C ·B bits from a to b.

Alice Bobℓ = 1

ℓ = 3

Cut0 Cut1 Cut2 Cut3

Cut4

Cut5 Cut6

Figure 14.7: A simple network and a moving cut of capacity C = 4 and distance
T = 7. The vertical red lines are the “moving cuts” Cut0, . . . ,Cut6. If an edge e
has ℓe > 0, then e often remains on the boundary of Cutt many rounds, “holding
up” any moving cuts.

160 CHAPTER 14. GLOBAL PROBLEMS III

Proof. We define a sequence of cuts Cut0, . . . ,CutT−1. Formally, for each integer
t ∈ {0, 1, . . . , T − 1}

Cutt = { v ∈ V : d1+ℓ(a, v) ≤ t}.

Intuitively, we will be tracking the number of bits Mt that are “beyond” the
moving cut at that time. Formally, let

Mt = number of bits sent by a by round t that have arrived in V \ Cutt

Clearly M0 = 0. We will show MT−1 ≤ BC, so by round T − 1 node b (being
outside CutT−1) can have received at most BC bits, which will complete the
claim since b ∈ V \CutT−1 — i.e., all bits that b learns are “beyond” the moving
cut. See Figure 14.7 for a simple example.

In round t, exactly those edges connecting Cutt and V \Cutt+1 are contribut-
ing to Mt. Let the set of those edges be Crosst. Formally, for 0 ≤ t ≤ T − 2,
let

Crosst =
��{ e = (u, v) ∈ E : u ∈ Cutt, v /∈ Cutt+1}

��.
As said, in round t, at most B · Crosst new bits can cross from Cutt into

V \ Cutt+1, so
Mt+1 −Mt ≤ B Crosst.

Summing over t = 0, . . . , T − 2 gives

MT−1 =

T−2X

t=0

(Mt+1 −Mt) ≤ B

T−2X

t=0

Crosst.

Now consider an edge e = (u, v). WLOG assume d1+ℓ(a, u) ≤ d1+ℓ(a, v). Edge
e contributes to Crosst exactly when d1+ℓ(a, u) ≤ t ≤ d1+ℓ(a, v) − 2. This
happens a total of d1+ℓ(a, v) − d1+ℓ(a, u) − 1 ≤ ℓ(e) rounds, where we use
triangle inequality. Hence each edge e contributes at most ℓ(e) to

P
t Crosst.

Consequently:
P

t Crosst ≤
P

e∈E ℓ(e) = C, and therefore

MT−1 ≤ BC.

Since all bits arriving at b by round T − 1 are counted in MT−1, the theorem
follows.

Note that, because the graph is undirected (or more generally symmetric),
the same argument applies in reverse: a moving cut of the same capacity and
distance also limits Bob’s ability to send information back to Alice.

14.3 Moving cuts in Peleg–Rubinovich graphs
In this section we show that any distributed protocol for set-disjointness, hence
also MST, on the Peleg–Rubinovich graph must run for Ω̃(

√
n) rounds. The key

is to construct a moving cut of small capacity but large distance: even though
the total “guarded” capacity is only O(1γ

√
n log n), it stretches every Alice–Bob

path to length Ω(1γ
√
n), for any γ > 0. So by the bandwidth–latency theorem

no algorithm can communicate enough bits in fewer rounds.

BIBLIOGRAPHY 161

Lemma 14.8. For every γ > 0 there exists a moving cut ℓPG in the Pe-
leg–Rubinovich graph with

capacity(ℓPG) = O
� 1
γ

√
n log n

�
, distance(ℓPG) = Ω

� 1
γ

√
n
�
.

Proof. To all edges that are not in the tree assign ℓe = 0. we now restrict our
attention to the binary tree T of depth O(log n). Assign to the parent edge of
each leaf node the value ℓe = 1. To their parent edge, assign ℓe = 2. To their
parent, assign ℓe = 4 (doubling each time), and so on. Finally, we scale all ℓe
by 1γ and round down to make them integers. In general, assign

ℓe = ⌊2
h

γ
⌋ for each parent edge of a node at height h.

Since there are at most
√
n/2h nodes at height h, the total capacity is at most

O(log n)X

h=0

√
n

2h
2h

γ
= O(

1

γ

√
n log n)

Meanwhile, it is easy to check that any path from Alice to Bob in the increased
1+ℓ metric has a distance of at least Ω(

√
n
γ). So the cut’s distance is Ω(

√
n
γ).

Corollary 14.9. In the Peleg–Rubinovich graph, any distributed algorithm that
uses B-bit messages per edge per round to compute the distributed MST requires
Ω̃
�√

n
B

�
rounds.

Proof. By Lemma 14.4, any distributed algorithm by which every node learns
the cost of the MST in the Peleg–Rubinovich graph also solves set-disjointness
for

A = {i | ai = 0}, B = {i | bi = 0}.
From communication complexity we know that this requires Ω(

√
n) bits of

communication Alice and Bob. By Lemma 14.8 with γ = c ·B log n where c > 0
is a sufficiently large constant, we know that there exists a moving cut ℓPG with
capacity

O

�√
n

cB

�

and distance

Ω

� √
n

cB log n

�
.

By the bandwidth–latency theorem, in T − 1 = Ω̃(
√
n

cB log n) rounds one can
transmit at most C · B = Ω(

√
n/c) bits from Alice to Bob. This is insufficient

to solve set disjointness, hence the MST. Thereforem any algorithm requires T
rounds, as required by the theorem.

Bibliography
[PR00] David Peleg and Vitaly Rubinovich. A Near-Tight Lower Bound on

the Time Complexity of Distributed Minimum-Weight Spanning Tree
Construction. SIAM J. Comput., 30(5):1427–1442, May 2000.

