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What is a MIS?

MIS
An independent set (IS) of an undirected
graph is a subset U of nodes such that
no two nodes in U are adjacent. An IS is
maximal if no node can be added to U 
without violating IS (called MIS). A maximum
IS (called MaxIS) is one of maximum cardinality.

... known from „classic TCS“: 
applications? 
backbone, parallelism, ... 
complexities? 
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MIS and MaxIS?
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Nothing, IS, MIS, MaxIS?

IS but not MIS.
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Nothing, IS, MIS, MaxIS?

Nothing.
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Nothing, IS, MIS, MaxIS?

MIS.
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Nothing, IS, MIS, MaxIS?

MaxIS.
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Complexities?

MaxIS is NP-hard! 
So let‘s concentrate on MIS... 

How much worse can MIS be than MaxIS?
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MIS vs MaxIS

How much worse can MIS be than MaxIS?

minimal MIS? maxIS?
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MIS vs MaxIS

How much worse can MIS be than Max-IS?

minimal MIS? Maximum IS?
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How to compute a MIS in a distributed manner?!
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Recall: Local Algorithm

... compute.

... receive...

Send...
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Slow MIS

Slow MIS
assume node IDs
Each node v:
1. If all neighbors with larger IDs have decided

not to join MIS then:
v decides to join MIS

Analysis?
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Analysis

Time Complexity?

Not faster than sequential algorithm!
Worst-case example?
E.g., sorted line: O(n) time.

Local Computations?

Fast! ☺

Message Complexity?

For example in clique: O(n2) 
(O(m) in general: each node needs to inform all
neighbors when deciding.)
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MIS and Colorings

Independent sets and colorings are related: how?

Each color in a valid coloring constitutes an 
independent set (but not necessarily a MIS).

How to compute MIS from coloring?

Choose all nodes of first color. Then for any 
additional color, add in parallel as many nodes as 
possible! 

Why, and implications?
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Coloring vs MIS

Valid coloring:
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Coloring vs MIS

Independent set:
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Coloring vs MIS

Add all possible blue:
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Coloring vs MIS

Add all possible violet:
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Coloring vs MIS

Add all possible green:
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Coloring vs MIS

That‘s all: MIS!

Analysis of algorithm?
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Analysis

Why does algorithm work?

Same color: all nodes independent, can add them in 
parallel without conflict (not adding two conflicting 
nodes concurrently).

Runtime?

Lemma
Given a coloring algorithm with runtime T that
needs C colors, we can construct a MIS in time
C+T.
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Discussion

What does it imply for MIS on trees?
We can color trees in log* time and with 3 colors, so:

MIS on Trees
There is a deterministic MIS on trees that runs
in distributed time O(log* n).



Stefan Schmid @ T-Labs, 2011

Better MIS Algorithms

Takeaway
If you can‘t find fast deterministic algorithms,
try randomization!

Ideas for randomized algorithms?

Any ideas?
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Fast MIS from 1986...

Fast MIS (1986)
Proceed in rounds consisting of phases
In a phase:

1. each node v marks itself with probability 1/(2d(v))
where d(v) denotes the current degree of v

2. if no higher degree neighbor is marked, v joins
MIS; otherwise, v unmarks itself again (break ties
arbitrarily)

3. delete all nodes that joined the MIS plus their
neighbors, a they cannot join the MIS anymore

Why is it correct? Why IS? Why MIS?
Note: the higher the degree the less likely
to mark, but the more likely to join MIS
once marked! 
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MIS 1986

Probability of marking?
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MIS 1986

Probability of marking?

1/4

1/4
1/4

1/4

1/4

1/2

1/2

1/2

1/2

1/8
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MIS 1986

Marking... Who stays?

1/4

1/4
1/4

1/4

1/4

1/2

1/2

1/2

1/2

1/8

1/4
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MIS 1986

And now?

1/4

1/4
1/4

1/4

1/4

1/2

1/2

1/2

1/2

1/8

1/4

unmarked: 
higher degree 
neighbor marked...

unmarked: 
tie broken...

unmarked: 
tie broken...
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MIS 1986

Delete neighborhoods...
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Correctness

Fast MIS (1986)
Proceed in rounds consisting of phases
In a phase:

1. each node v marks itself with probability 1/2d(v)
where d(v) denotes the current degree of v

2. if no higher degree neighbor is marked, v joins
MIS; otherwise, v unmarks itself again (break ties
arbitrarily)

3. delete all nodes that joined the MIS plus their
neighbors, a they cannot join the MIS anymore

IS: Step 1 and Step 2 ensure that
node only joins if neighbors do not!

MIS: At some time, nodes
will mark themselves in Step 1.
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Runtime?

Fast MIS (1986)
Proceed in rounds consisting of phases
In a phase:

1. each node v marks itself with probability 1/2d(v)
where d(v) denotes the current degree of v

2. if no higher degree neighbor is marked, v joins
MIS; otherwise, v unmarks itself again (break ties
arbitrarily)

3. delete all nodes that joined the MIS plus their
neighbors, as they cannot join the MIS anymore

Runtime: how fast will algorithm
terminate?
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Our Strategy!

We want to show logarithmic runtime. So for example?
Idea:

Unfortunately, this is not true... / Alternative?

Each node is removed with constant probability (e.g., ½) in each round => half 
of the nodes vanish in each round. 

Or: Each edge is removed with constant probability in each round! As O(log m) 
= O(log n2) = O(log n)

A constant fraction of all nodes are removed in each step! 
E.g., a constant subset of nodes is „good“ and a constant fraction thereof is 
removed... 

Or the same for edges...
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Analysis

Joining MIS
Node v joins MIS in Step 2 with probability p ≥

 

?

Proof.

On what could it depend?

Marked with probability that depends on degree, i.e., 1/2d(v).
(So at most this...)

In MIS subsequently if degree is largest...
(This is likely then if degree is small!)

We will find that marked nodes are likely to join MIS!



Stefan Schmid @ T-Labs, 2011

Analysis

Joining MIS
Node v joins MIS in Step 2 with probability p ≥

 

1/(4d(v)).

Proof.
Let M be the set of marked nodes in Step 1. 
Let H(v) be the set of neighbors of v with higher degree (or same
degree and higher identifier).

P[v ∈

 

MIS | v ∈

 

M]   = P[∃

 

w ∈

 

H(v), w ∈

 

M | v ∈

 

M]
= P[∃

 

w ∈

 

H(v), w ∈

 

M]
·

 

∑w ∈

 

H(v) P[w ∈

 

M]
= ∑w ∈

 

H(v) 1/(2d(w))
·

 

∑w ∈

 

H(v) 1/(2d(v))
·

 

d(v)/(2d(v)) = 1/2

// independent whether v is marked or not

// do not only count exactly one but also multiple

// see Joining MIS algorithm

// v‘s degree is the lowest one

// at most d(v) higher neighbors...

So
P[v ∈

 

MIS]     = P[v ∈

 

MIS | v ∈

 

M] ·

 

P[v ∈

 

M]
≥

 

½ ·

 

1/(2d(v)) QED

Marked nodes are
likely to be in MIS!
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Recall Our Strategy!

We want to show logarithmic runtime. So for example?
Idea:

Unfortunately, this is not true... / Alternative?

Each node is removed with constant probability (e.g., ½) in each round => half 
of the nodes vanish in each round. 

Or: Each edge is removed with constant probability in each round! As O(log m) 
= O(log n2) = O(log n)

A constant fraction of all nodes are removed in each step! 
E.g., a constant subset of nodes is „good“ and a constant fraction 
thereof is removed... 

Or the same for edges...

How to define good nodes?!
Node with low degree neighbors!
(Why? Likely to be removed as neighbors
are likely to be marked and hence join MIS...)

Let‘s try this:
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Analysis

Good Nodes
A good node v will be removed in Step 3 with probability

p ≥
 

1/36.

Proof? 

Good&Bad Nodes
A node v is called good if

∑w ∈

 

N(v) 1/(2d(w)) ≥
 

1/6.

A good node has neighbors
of low degree. Likely to be
removed when neighbor
joins MIS!

What does it mean?
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Analysis (1)

Proof („Good Nodes“).

If v has a neighbor w with d(w) ·

 

2?

Done: „Joining MIS“ lemma implies that prob. to remove at least 1/8 since
neighbor w will join...

So let‘s focus on neighbors with degree at least 3: thus for any
neighbor w of v we have 1/(2d(w)) ·

 

1/6.

„Assets“:

Goal:

w

v
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Analysis (2)

Proof („Good Nodes“).

Then, for a good node v, there must be a subset S ⊆

 

N(v) such that

1/6 ·

 

∑w ∈

 

S 1/(2d(w)) ·

 

1/3.

Why?

By taking all neighbors we have at least 1/6 (Definition), and we can remove
individual nodes with a granularity of at least 1/6 (degree at least 3).

„Assets“:

Goal:

So neighbors have degree at least 3...
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Analysis (3)

Proof („Good Nodes“).

Let R be event that v is removed (e.g., if neighbor joins MIS). 

P[R] ≥

 

P[∃

 

u ∈

 

S, u ∈

 

MIS]   // removed e.g., if neighbor joins

≥

 

∑u ∈

 

S P[u ∈

 

MIS] - ∑u,w ∈

 

S P[u ∈

 

MIS and w ∈

 

MIS]  // why?

By truncating the inclusion-exclusion priniple...:
Probability that there is one is sum of probability for all individual
minus probability that two enter, plus...

independent but
count same node double
in sum...

just derived!

see algorithm
see Joining MIS
lemma

QED
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Analysis

We just proved:

Cool, good nodes have
constant probability! ☺
But what now? 
What does it help?
Are many nodes good in a graph? 

Example: in star graph,
only single node is good... /

But: there are many „good edges“...
How to define good edges?
Idea: edge is removed if either of its endpoints
are removed! So good if at least one endpoint
is a good node! And there are many such edges...
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Analysis

Good Edges
At least half of all edges are good, at any time.

Proof? 

Good&Bad Edges
An edge e=(u,v) called bad if
both u and v are bad (not good).
Else the edge is called good.

A bad edge is incident to
two nodes with neighbors
of high degrees.

☺ ☺ /
☺ ☺ ☺

/ / /
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Analysis

/ /

/

/

/

/

☺

☺

☺

☺

☺

☺

☺

Not many good nodes...

... but many good edges!
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Analysis

Helper Lemma
A bad node v has out-degree at least twice its indegree.

Idea: Construct an auxiliary graph! Direct each edge towards higher
degree node (if both nodes have same degree, point it to one with
higher ID).

Proof („Helper Lemma“).
Assume the opposite: at least d(v)/3 neighbors (let‘s call them S ⊆

 

N(v)) 
have degree at most d(v) (otherwise v would point to them). But then

only subset... Def. of S Assumption

towards
higher degree
nodes

QED

/

Contradiction:
v would be
good!

from low
degree nodes
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Analysis

Helper Lemma
A bad node v has out-degree at least twice its indegree.

Idea: Construct an auxiliary graph! Direct each edge towards higher
degree node (if both nodes have same degree, point it to one with
higher ID).

So what?

The number of edges into bad nodes can be
at most half the number of all edges!
So at least half of all edges are directed into good nodes!
And they are good! ☺

/
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Analysis

Proof („Fast MIS“)?

QED

Fast MIS (1986)
Fast MIS terminates in expected time O(log n).

We know that a good node will be deleted with constant probability
in Step 3 (but there may not be many). And with it, a good edge (by definition)!

Since at least half of all the edges are good (and thus have at least
one good incident node which will be deleted with constant
probability and so will the edge!), a constant fraction of edges will be deleted
in each phase.
(Note that O(log m)=O(log n).)
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Back to the future: 
Fast MIS from 2009...!

Even simpler algorithm!
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Fast MIS from 2009...

Fast MIS (2009)
Proceed in rounds consisting of phases!
In a phase:

1. each node chooses a random value r(v) ∈

 

[0,1] and
sends it to ist neighbors.

2. If r(v) < r(w) for all neighbors w ∈

 

N(v), node v enters
the MIS and informs the neighbors

3. If v or a neighbor of v entered the MIS, v terminates
(and v and edges are removed), otherwise v enters
next phase!
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Fast MIS from 2009...



Stefan Schmid @ T-Labs, 2011

Fast MIS from 2009...

.1

.3

.6

.7

.9

.6

.8

.8

.2

.4

Choose random values!
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Fast MIS from 2009...

Min in neighborhood => IS!

.1

.3

.6

.7

.9

.6

.8

.8

.2

.4
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Fast MIS from 2009...

Remove neighborhoods...
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Fast MIS from 2009...

.4

.5

.8

Choose random values!
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Fast MIS from 2009...

.4

.5

.8

Min in neighborhood => IS!
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Fast MIS from 2009...

Remove neighborhoods...
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Fast MIS from 2009...

.1

Choose random values!
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Fast MIS from 2009...

.1

lowest value => IS
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Fast MIS from 2009...

... done: MIS!
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Fast MIS from 2009...

Fast MIS (2009)
Proceed in rounds consisting of phases!
In a phase:

1. each node chooses a random value r(v) ∈

 

[0,1] and
sends it to ist neighbors.

2. If r(v) < r(w) for all neighbors w ∈

 

N(v), node v enters
the MIS and informs the neighbors

3. If v or a neighbor of v entered the MIS, v terminates
(and v and edges are removed), otherwise v enters
next phase!

Why is it correct? Why IS? 
Step 2: if v joins, neighbors do not
Step 3: if v joins, neighbors will never join again
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Fast MIS from 2009...

Fast MIS (2009)
Proceed in rounds consisting of phases!
In a phase:

1. each node chooses a random value r(v) ∈

 

[0,1] and
sends it to ist neighbors.

2. If r(v) < r(w) for all neighbors w ∈

 

N(v), node v enters
the MIS and informs the neighbors

3. If v or a neighbor of v entered the MIS, v terminates
(and v and edges are removed), otherwise v enters
next phase!

Why MIS? 
Node with smalles random value will always join the
IS, so there is always progress.
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Fast MIS from 2009...

Fast MIS (2009)
Proceed in rounds consisting of phases!
In a phase:

1. each node chooses a random value r(v) ∈

 

[0,1] and
sends it to ist neighbors.

2. If r(v) < r(w) for all neighbors w ∈

 

N(v), node v enters
the MIS and informs the neighbors

3. If v or a neighbor of v entered the MIS, v terminates
(and v and edges are removed), otherwise v enters
next phase!

Runtime? 
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Analysis: Recall „Linearity of Expectation“

We sum over all
possible y values
for a given x,
so =1
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Analysis? (1)

We want to show that also this algorithm
has logarithmic runtime! How?

Idea: if per phase a constant fraction of node disappeared,
it would hold! (Recall definition of logarithm...)

Again: this is not true unfortunately... /
Alternative proof? Similar to last time?

Show that any edge disappears with constant probability!

But also this does not work: edge does not have
constant probability to be removed!
But maybe edges still vanish quickly...?

Let‘s estimate the number of disappearing edges per round again!
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Analysis? (2)

Probability of a node v to enter MIS?
Probability = node v has largest ID in neighborhood, so
at least 1/(d(v)+1)...

... also v‘s neighbors‘ edges will disappear with this probability, 
so more than d(v) edges go away with this probability!

But let‘s make sure we do not double count edges!

0 2

37

6 8 1

4

0 2

37

6 8 1

4

0 2

37

6 8 1

4

Don‘t count twice! How?

Idea: only count edges
from a neighbor w
when v is the smallest
value even in w‘s 
neighborhood!
It‘s a subset only,
but sufficient!

del neighbors
of node 0

del neighbors
of node 1
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Edge Removal: Analysis (1)

Proof („Edge Removal“)?

Edge Removal
In expectation, we remove at least half of all the
edges in any phase.

Consider the graph G=(V,E), and assume v joins MIS
(i.e., r(v)<r(w) for all neighbors w). 
If in addition, it holds that r(v)<r(x) for all neighbors x of a 
neighbor w, we call this event (v => w).

What is the probability of this event (that
v is minimum also for neighbors of 
the given neighbor)?

P [(v => w)] ≥

 

1/(d(v)+d(w)), 

since d(v)+d(w) is the maximum possible number of 
nodes adjacent to v and w.
If v joins MIS, all edges (w,x) will be removed; 
there are at least d(w) many.

v w
event

v w
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Edge Removal: Analysis (2)

Proof („Edge Removal“)?

Edge Removal
In expectation, we remove at least half of all the
edges in any phase.

How many edges are removed?
Let X(v=>w) denote random variable for number of edges adjacent to w removed
due to event (v=>w). If (v=>w) occurs, X(v=>w) has value d(w), otherwise 0. 
Let X denote the sum of all these random variables.
So:

So all edges gone in one phase?!
We still overcount! 

v w
event
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Edge Removal: Analysis (3)

Proof („Edge Removal“)?

Edge Removal
In expectation, we remove at least half of all the
edges in any phase.

We still overcount:
Edge {v,w} may be counted twice:
for event (u=>v) and event (x=>w).

However, it cannot be more than twice, as
there is at most one event (*=>v) and
at most one event (*=>w):

Event (u=>v) means r(u)<r(w) for all
w ∈

 

N(v); another (u‘=>v) would imply
that r(u‘)>r(u) ∈

 

N(v).

So at least half of all edges vanish!

v w

u

v w

u

QED

x

x
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2009 MIS: Analysis

Proof („MIS 2009“)?

MIS of 2009
Expected running time is O(log n).

Number of edges is cut in two in each round...

QED

Actually, the claim even holds with high probability! (see „Skript“)
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Excursion: Matchings

Matching
A matching is a subset M of edges E such that no
two edges in M are adjacent. 
A maximal matching cannot be augmented.
A maximum matching is the best possible.
A perfect matching includes all nodes.
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Excursion: Matchings

Matching? Maximal? Maximum? Perfect?
Maximal.
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Excursion: Matchings

Matching? Maximal? Maximum? Perfect?
Nothing.
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Excursion: Matchings

Matching? Maximal? Maximum? Perfect?
Maximum but not perfect.
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Discussion: Matching

Matching
A matching is a subset M of edges E such that no
two edges in M are adjacent. 
A maximal matching cannot be augmented.
A maximum matching is the best possible.
A perfect matching includes all nodes.

How to compute with an IS algorithm?
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Discussion: Matching

An IS algorithm is a matching algorithm! How? 

For each edge in original graph make vertex, connect 
vertices if their edges are adjacent. 

1
3

2

4

5
6

7

12 56

57

13
34

23

35

67
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Discussion: Matching

MIS = maximal matching: matching does not 
have adjacent edges!

1
3

2

4

5
6

7

12 56

57

13
34

23

35

67
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Discussion: Graph Coloring

How to use a MIS algorithm for graph coloring?

1
3

2
4

6

5

How to use a MIS algorithm for graph coloring?

1a
1b

2a
2b

6a
6b

3c
3d

3a
3b

3e

5c
5d

5a
5b

4c
4a

4b

Clone each node v, d(v)+1 many times. Connect clones 
completely and edges from i-th clone to i-th clone. Then?
Run MIS: if i-th copy is in MIS, node gets color i.
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Discussion: Graph Coloring

Example:

1
3

2

How to use a MIS algorithm for graph coloring?

1a

1b

2a

2b

3b
3a

3c

1
3

2

MIS Coloring

a => blue 
b => green
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Discussion: Graph Coloring

Why does it work?

1
3

2
4

6

5 1a
1b

2a
2b

6a
6b

3c
3d

3a
3b

3e

5c
5d

5a
5b

4c
4a

4b

1. Idea conflict-free: adjacent nodes cannot get same color (different  
index in MIS, otherwise adjacent!), and each node 
has at most one clone in IS, so valid. 

2. Idea colored: each node gets color, i.e., each node has a clone in IS: there 
are only d(v) neighbor clusters, but our cluster has d(v)+1 nodes...
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Discussion: Dominating Set

Dominating Set
A subset D of nodes such that each node either is
in the dominating set itself, or one of ist neighbors
is (or both).

How to compute a dominating set? 
See Skript. ☺
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End of lecture

Literature for further reading: 

- Peleg‘s book (as always ☺

 

)
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