= A
M EZIN

0\0_00
The Locality of Maximal Matching

Manuela Fischer
ETH Zurich

Locality

Locality

i

A

Locality

Locality

zp

% [~
1
I
1

g

A

LOCAL Model iinial [Focs's7]

LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V, E),
n nodes, maximum degree A

LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V,E),
n nodes, maximum degree A

-

™

-

‘I 1

/

™

B

™

L

/

/

A;Li'_

b=
b=

A

A N

LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V, E),
n nodes, maximum degree A

LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V, E),
n nodes, maximum degree A

e each round, every node
* receives messages (sent in previous round)
* performs some computation
* sends message to all its neighbors

LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V,E),
n nodes, maximum degree A

e each round, every node
* receives messages (sent in previous round)
* performs some computation
* sends message to all its neighbors

* unbounded message size

LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

undirected graph ¢ = (V,E),
n nodes, maximum degree A

e each round, every node
* receives messages (sent in previous round)
* performs some computation
* sends message to all its neighbors

* unbounded message size

* unbounded computation

LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V,E),
n nodes, maximum degree A

e each round, every node
* receives messages (sent in previous round)
* performs some computation
* sends message to all its neighbors

* unbounded message size

* unbounded computation

 Round Complexity:
number of rounds to solve the problem

LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V, E),
n nodes, maximum degree A

e each round, every node
* receives messages (sent in previous round)
* performs some computation
* sends message to all its neighbors

* unbounded message size

* unbounded computation

 Round Complexity:
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality

LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V, E),
n nodes, maximum degree A

e each round, every node
* receives messages (sent in previous round)
* performs some computation
* sends message to all its neighbors

* unbounded message size

* unbounded computation

 Round Complexity:
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality

LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V, E),
n nodes, maximum degree A

e each round, every node
* receives messages (sent in previous round)
* performs some computation
* sends message to all its neighbors

* unbounded message size

* unbounded computation

 Round Complexity:
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality

LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V, E),
n nodes, maximum degree A

e each round, every node
* receives messages (sent in previous round)
* performs some computation
* sends message to all its neighbors

* unbounded message size

* unbounded computation

 Round Complexity:
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality

LOCAL Model iinial [Focs's7]

standard synchronous message-passing model of distributed computing

 undirected graph G = (V, E),
n nodes, maximum degree A

e each round, every node
* receives messages (sent in previous round)
* performs some computation
* sends message to all its neighbors

* unbounded message size

* unbounded computation

 Round Complexity:
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality
every problem is trivially solvable in O(diameter) rounds

Classic LOCAL Graph Problems

Classic LOCAL Graph Problems

Maximal Independent Set

Classic LOCAL Graph Problems

Maximal Independent Set

(A + 1)-Vertex-Coloring

Classic LOCAL Graph Problems

Maximal Independent Set

(A + 1)-Vertex-Coloring

Maximal Matching
./-0 ? o0

Tyt
“

Classic LOCAL Graph Problems

Maximal Independent Set

(A + 1)-Vertex-Coloring

Maximal Matching
./-0 ? o0

Tyt
“

(2A — 1)-Edge-Coloring

Classic LOCAL Graph Problems

Maximal Independent Set

(A + 1)-Vertex-Coloring

Maximal Matching
./-0 ? o 90

Tyt
“

(2A — 1)-Edge-Coloring

Easy centralized problems: greedy solutions.

Maximal Matching

N
»%m

J
ﬂwﬂ |

)

X2

S

.’/«r
N/

)

N

9
WL

)

I\

Maximal Matching

NE

awms

)

i
£
>

> o)
v
. o)
d - 0
5 =
S
0 Q
c o
© o)
° c S
py o
oo >
. o) . o)
v v
o @
c b0

Centralized (Sequential) Algorithm

R

R rAS

R

R rAS

Centralized (Sequential) Algorithm

Centralized (Sequential) Algorithm

Centralized (Sequential) Algorithm

LOCAL Algorithm Mimicking Sequential Algorithm

LOCAL Algorithm Mimicking Sequential Algorithm

N

LOCAL Algorithm Mimicking Sequential Algorithm

38
O .
1 a
25 21
35

()
® 33 19
34 32
) 9
10 X 30 31 .
£\ . ()
3 1 6 R 26
24 11 15
12
(D 5 14 O

i

LOCAL Algorithm Mimicking Sequential Algorithm

38
) .
1 a
25 21
35

()
@ 33 19
34 32
) 9
10 X 30 31 .
£\ . ()
3 1 6 R 26
24 11 15
12
O W 14 O

LOCAL Algorithm Mimicking Sequential Algorithm

38

28

9
10

2
O 3

'
./

1
7
13
M
4
24
16

C

6

LOCAL Algorithm Mimicking Sequential Algorithm

38

LOCAL Algorithm Mimicking Sequential Algorithm

38

LOCAL Algorithm Mimicking Sequential Algorithm

38

LOCAL Algorithm Mimicking Sequential Algorithm

38

LOCAL Algorithm Mimicking Sequential Algorithm
? 10 20 O 30 31 17

: 3 . 4 8 6 :8
36
24 11 15
12

i 18 / 26
29
22
%3 = cf)

LOCAL Algorithm Mimicking Sequential Algorithm
? 10 20 O 30 31 17

: 3 . 4 8 6 :8
36
24 11 15
12

C\ 14
18 26
16
27 29
22
C% 24 f
can take Q(diameter) rounds
in worst case

LOCAL Algorithm Mimicking Sequential Algorithm

38
28 N
| 37
25 21
7 35
33 .
13 . 34 32
2
10 30 31
o O 17

: 3 : 4 B} 6 : 3
36
11 15
12

24

<:L\£i-(:) 14

16 18 26
C%j 2 Random Numbers:
U 94 f
. O(log n) rounds w.h.p.
can take QQ(diameter) rounds Luby [STOC’85]

In worst case F., Noever [SODA’18]

LOCAL Algorithm: Luby’s Randomized Algorithm

LOCAL Algorithm: Luby’s Randomized Algorithm

N

LOCAL Algorithm: Luby’s Randomized Algorithm

-
SIFS
AN

O

T~

LOCAL Algorithm: Luby’s Randomized Algorithm

LOCAL Algorithm: Luby’s Randomized Algorithm
O—O

]
b |
"~

O—0

LOCAL Algorithm: Luby’s Randomized Algorithm
O—O

]
4]
O\Oo—o

[E[#removed edges per round]| = c|E;|

LOCAL Algorithm: Luby’s Randomized Algorithm
O—O

]
4]
O\Oo—o

E[#removed edges per round] = c|E;] O(logn) rounds w.h.p.

Our Result

Our Result

deterministic O (log” A - log n)-round Maximal Matching

Our Result

deterministic O (log” A - log n)-round Maximal Matching

Improving over

Our Result

deterministic O (log” A - log n)-round Maximal Matching

Improving over

0 (log* n)
Hanckowiak, Karonski, Panconesi [SODA’98, PODC'99]

Our Result

deterministic O (log” A - log n)-round Maximal Matching

Improving over

0 (log* n)
Hanckowiak, Karonski, Panconesi [SODA’98, PODC'99]

O(A + log* n)
Panconesi, Rizzi [DIST'01]

Overview of Results

Maximal Matching
e Maximal Matching O(log? A - logn)
e Randomized Maximal Matching O(log3logn + log A)

Approximate Matching

* (2 + ¢) - Approximate Maximum Matching log? A - log §+ log™n

(2 + €) - Approximate Maximum Weighted Matching

log? A - log % + log* n

log? A - log = + log” n)
&
* (24 ¢€) - Approximate Maximum B-Matching)

* (2 + ¢) - Approximate Maximum Weighted B-Matching log? A - log i + log™ n

log?A - logl)

 ¢-Maximal Matching -

log?A - logé)

o
o
o
o
o
o

(2 + ¢) - Approximate Minimum Edge Dominating Set

Constant - Approximate Bipartite Matching

0(log? A) rounds

Constant - Approximate Bipartite Matching 0(log? A) rounds

Constant - Approximate Bipartite Matching 0(log? A) rounds

Constant - Approximate Bipartite Matching

0(log? A) rounds

1) 4 - Approximate Fractional Matching
O(log A) rounds

Constant - Approximate Bipartite Matching 0(log? A) rounds

1) 4 - Approximate Fractional Matching
O(log A) rounds

Il) Rounding Fractional Bipartite Matching
O(log? A) rounds, 0(1) loss

1) 4-Approximate Fractional Matching

O(logA) rounds

1) 4-Approximate Fractional Matching

O(logA) rounds

Fractional Maximum Matching

max 3 x,

e€EE
s.t. Z Xe=1 forallvev
e€E(v)
X, € [0,1] foralle € E

1) 4-Approximate Fractional Matching

O(logA) rounds

Fractional Maximum Matching

max 3 x,

ccg Vvalueofv

s.t. Z Xel<1 forallvev
eEE(v)

X, € [0,1] foralle € E

1) 4-Approximate Fractional Matching

O(logA) rounds

Fractional Maximum Matching

max 3 x,

ccg Vvalueofv

s.t. Z Xel<1 forallvev
eEE(v)

X, € [0,1] foralle € E

LOCAL Greedy Algorithm
x, = 21984l foralle € E
repeat until all edges are blocked
mark half-tight nodes
block its edges

double value of unblocked edges

1) 4-Approximate Fractional Matching

O(logA) rounds

V=
O . (. \.. O

Fractional Maximum Matching

max 3 x,

ccg Vvalueofv

s.t. Z Xel<1 forallvev
eEE(v)

X, € [0,1] foralle € E

LOCAL Greedy Algorithm
x, = 21984l foralle € E
repeat until all edges are blocked
mark half-tight nodes
block its edges

double value of unblocked edges

1) 4-Approximate Fractional Matching

O(logA) rounds

Fractional Maximum Matching

max 3 x,

ccg Vvalueofv

s.t. Z Xel<1 forallvev

eEE(v)
X, € [0,1] foralle € E
LOCAL Greedy Algorithm

x, = 21984l foralle € E
repeat until all edges are blocked
mark half-tight nodes
block its edges

double value of unblocked edges

1) 4-Approximate Fractional Matching

O(logA) rounds

Fractional Maximum Matching

max 3 x,

ccg Vvalueofv

s.t. Z Xel<1 forallvev
eEE(v)

X, € [0,1] foralle € E

N | =

v is half-tight if its value is >

LOCAL Greedy Algorithm
x, = 21984l foralle € E
repeat until all edges are blocked
mark half-tight nodes
block its edges

double value of unblocked edges

1) 4-Approximate Fractional Matching

O(logA) rounds

Fractional Maximum Matching

max 3 x,

ccg Vvalueofv

s.t. Z Xel<1 forallvev
eEE(v)

X, € [0,1] foralle € E

N | =

v is half-tight if its value is >

LOCAL Greedy Algorithm
x, = 21984l foralle € E
repeat until all edges are blocked
mark half-tight nodes
block its edges

double value of unblocked edges

1) 4-Approximate Fractional Matching

O(logA) rounds

Fractional Maximum Matching

max 3 x,

ccg Vvalueofv

s.t. Z Xel<1 forallvev
eEE(v)

X, € [0,1] foralle € E

N | =

v is half-tight if its value is >

LOCAL Greedy Algorithm
x, = 21984l foralle € E
repeat until all edges are blocked
mark half-tight nodes
block its edges

double value of unblocked edges

1) 4-Approximate Fractional Matching

O(logA) rounds

P oA

—_
O\|H

Q| =

Fractional Maximum Matching

max 3 x,

ccg Vvalueofv

s.t. Z Xel<1 forallvev
eEE(v)

X, € [0,1] foralle € E

N | =

v is half-tight if its value is >

LOCAL Greedy Algorithm
x, = 21984l foralle € E
repeat until all edges are blocked
mark half-tight nodes
block its edges

double value of unblocked edges

1) 4-Approximate Fractional Matching

O(logA) rounds

=

(

1
16

Q| =

Fractional Maximum Matching

max 3 x,

ccg Vvalueofv

s.t. Z Xel<1 forallvev
eEE(v)

X, € [0,1] foralle € E

N | =

v is half-tight if its value is >

LOCAL Greedy Algorithm
x, = 21984l foralle € E
repeat until all edges are blocked
mark half-tight nodes
block its edges

double value of unblocked edges

1) 4-Approximate Fractional Matching

O(logA) rounds

@ O O

@)
N
Q|

Fractional Maximum Matching

max 3 x,

ccg Vvalueofv

s.t. Z Xel<1 forallvev
eEE(v)

X, € [0,1] foralle € E

N | =

v is half-tight if its value is >

LOCAL Greedy Algorithm
x, = 21984l foralle € E
repeat until all edges are blocked
mark half-tight nodes
block its edges

double value of unblocked edges

1) 4-Approximate Fractional Matching

O(logA) rounds

O

O

—_
O\|H

Q| =

N

Fractional Maximum Matching

max 3 x,

ccg Vvalueofv

s.t. Z Xel<1 forallvev
eEE(v)

X, € [0,1] foralle € E

N | =

v is half-tight if its value is >

LOCAL Greedy Algorithm
x, = 21984l foralle € E
repeat until all edges are blocked
mark half-tight nodes
block its edges

double value of unblocked edges

1) 4-Approximate Fractional Matching

O(logA) rounds

O

O

—_
O\|H

Q| =

N

Fractional Maximum Matching

max 3 x,

ccg Vvalueofv

s.t. Z Xel<1 forallvev
eEE(v)

X, € [0,1] foralle € E

N | =

v is half-tight if its value is >

LOCAL Greedy Algorithm
x, = 21984l foralle € E
repeat until all edges are blocked
mark half-tight nodes
block its edges

double value of unblocked edges

1) 4-Approximate Fractional Matching

O(logA) rounds

O

O

—_
O\|H

Q| =

N

Fractional Maximum Matching

max 3 x,

ccg Vvalueofv

s.t. Z Xel<1 forallvev
eEE(v)

X, € [0,1] foralle € E

N | =

v is half-tight if its value is >

LOCAL Greedy Algorithm
x, = 21984l foralle € E
repeat until all edges are blocked
mark half-tight nodes
block its edges

double value of unblocked edges

Constant - Approximate Bipartite Matching 0(log? A) rounds

1) 4-Approximate Fractional Matching
O(log A) rounds

Il) Rounding Fractional Bipartite Matching
O(log? A) rounds, 0(1) loss

Il) Rounding Fractional Bipartite Matching

0(log? A) rounds, 0(1) loss

Il) Rounding Fractional Bipartite Matching

0(log? A) rounds, 0(1) loss

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Direct Rounding I

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Direct Rounding —_ —

€ 1

. Y Y Y Y Y. Y : :
| O(logA) iterations

Gradual Rounding

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Factor-2-Rounding

- U

=

QN

\Y
Q-

Direct Rounding —_ —

€ 1

. Y Y Y Y Y. Y : :
| O(logA) iterations

Gradual Rounding

Il) Rounding Fractional Bipartite Matching

0(log? A) rounds, 0(1) loss

Factor-2-Rounding

\Y
Q-

- U

=

QN

using Locally Balanced Splitting,
inspired by
Hanckowiak, Karonski, Panconesi [SODA’98 PODC’99]

—

T,

Direct Rounding

€

1
1

Gradual Rounding

| O(logA) iterations

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting:
2-edge-coloring so that
every node roughly balanced

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting: o—>°

2-edge-coloring so that T
every node roughly balanced]

I1) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting: o—>°

2-edge-coloring so that T
every node roughly balanced]

I1) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting: o—9°
2-edge-coloring so that T
every node roughly balanced]

Iterated Factor-2-Rounding

fori = [log4],...,1
E;={e€E:x,=2""
splitting of E; into]
increase [to 2711
decrease[] to 0

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting: o—9°
2-edge-coloring so that T A
every node roughly balanced] Q O

Iterated Factor-2-Rounding O

fori = [logA4],...,1 o
E;={e€E:x, =27
splitting of E; into] A
increase [} to 271 *1 O O

decrease[J to 0 O A &

2~

Q| =
N =

AN

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting: o—0° 1111
2-edge-coloring so that T 168 72 2
every node roughly balanced] o
O O
Iterated Factor-2-Rounding
. O
fori = [log4],...,1 d o
E;={e€E:x, =27
O

splitting of E; into]
increase [to 2711 Oo—=

decrease[] to 0 0 5

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting: o—9°
2-edge-coloring so that T
every node roughly balanced] o

Iterated Factor-2-Rounding
fori = [log4],...,1 o ®
E;={e€E:x, =27
splitting of E; into]
increase [to 2711 o—=

decrease [to 0 o o

2~

Q| =
N =

N

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting: o—9°
2-edge-coloring so that T
every node roughly balanced] O

Iterated Factor-2-Rounding

fori = [log4],...,1 o ®
E;={e€E:x, =27
splitting of E; into]
increase [} to 271+1

decrease [to 0 O o

2~

Q| =
N =

AN

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting: o—9°
2-edge-coloring so that T
every node roughly balanced] O

Iterated Factor-2-Rounding

fori = [log4],...,1 o ®
E;={e€E:x, =27
splitting of E; into]
increase [} to 271+1

decrease [to 0 ® o

=~)

Q| =
N =

AN

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

I1) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting: o—9°
2-edge-coloring so that T
every node roughly balanced]

Iterated Factor-2-Rounding

fori = [log4],...,1
E;={e€E:x,=2""
splitting of E; into]
increase [to 2711
decrease[] to 0

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

I1) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting: o—9°
2-edge-coloring so that T
every node roughly balanced]

Iterated Factor-2-Rounding

fori = [log4],...,1
E;={e€E:x,=2""
splitting of E; into]
increase [to 2711
decrease[] to 0

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

Il) Rounding Fractional Bipartite Matching

0(log? A) rounds, 0(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting: o—9°
2-edge-coloring so that T
every node roughly balanced]

Iterated Factor-2-Rounding

fori = [log4],...,1
E;={e€E:x, =27
splitting of E; into]
increase [} to 271+1

decrease[] to 0

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

>
—_
cr\|"x
-
]
N | -

O

O
O O

AP Igy =

>

Il) Rounding Fractional Bipartite Matching

0(log? A) rounds, 0(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting: o—9°
2-edge-coloring so that T
every node roughly balanced]

Iterated Factor-2-Rounding

fori = [log4],...,1
E;={e€E:x, =27
splitting of E; into]
increase [} to 271+1

decrease[] to 0

In case of perfect locally balanced splitting:
no constraint violated & no loss in total value
(i.e., perfect rouding)

>
—_
cr\|"x
-
]
N | -

@)

O
@) O

N L

/)

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting: o—>0 111 1
2-edge-coloring so that T 5 13
Oo—0 O

every node roughly balanced

Iterated Factor-2-Rounding

fori = [log4],...,1
E;={e€E:x, =27
splitting of E; into]
increase [to 2711 O
decrease[] to 0

In case of perfect locally balanced splitting: O O—Of/o
no constraint violated & no loss in total value

(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting: o—>0 1111
2-edge-coloring so that D <513
Oo—0

every node roughly balanced

Iterated Factor-2-Rounding

fori = [log4],...,1
E;={e€E:x, =27
splitting of E; into]
increase [to 2711 O
decrease[] to 0

In case of perfect locally balanced splitting: O—Of/o
no constraint violated & no loss in total value

(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

O []
Locally Balanced Splitting: o—0° 1 1 11
2-edge-coloring so that T 0O OO/O © 16 8 4 2
every node roughly balanced] O o
. O
Iterated Factor-2-Rounding % \

fori = [log4],...,1

Ei={e€E:x, =27 0/{\0

splitting of E; into]

increase [to 2711 O O
decrease [to 0 o
O

@)
O
In case of perfect locally balanced splitting: %/0 OO/O
no constraint violated & no loss in total value O

(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting o .
Locally Balanced Splitting: o—0° 1111
2-edge-coloring so that T O © @) © 168 2 2
every node roughly balanced] O O o

© O
Iterated Factor-2-Rounding O O o)
fori = |logAl, ..., 1 O
[log Al - o o OO o o
E;={e€E:x,=2"" e 5
o : @) O
splitting of E; into] S o °
increase [to 2711 O O O O O
decrease[] to 0 o o o
O @)
@)

In case of perfect locally balanced splitting: O @) @) O

no constraint violated & no loss in total value O O O O

(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Locally Balanced Splitting: o—>9 o o 1 1 1
2-edge-coloring so that T 0O O 16 8 4
every node roughly balanced] O O O o

Iterated Factor-2-Rounding @) @)
fori = [log4],...,1
E;={e€E:x,=2"" e
splitting of E; into] o o o
increase [} to 271 *1 © O O O O

Iterated Factor-2-Rounding using Locally Balanced Splitting o D
1
2

decrease [to 0 O o o

In case of perfect locally balanced splitting: e O o O O
no constraint violated & no loss in total value O O @) @)

(i.e., perfect rouding)

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Iterated Factor-2-Rounding using Locally Balanced Splitting

Locally Balanced Splitting: o—> 1

1 1
2-edge-coloring so that T o (O/o O T
every node roughly balanced] O O o

Iterated Factor-2-Rounding
fori = [log4],...,1

0
E;={e€E:x, =27 j e

splitting of E; into]
increase [to 2711 O———0
decrease [to 0 o

O
In case of perfect locally balanced splitting: \ (\é/O OO/O

no constraint violated & no loss in total value
(i.e., perfect rouding)

Il) Rounding Fractional Bipartite Matching

0(log? A) rounds, 0(1) loss

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Perfect Splitting not possible in case of...

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Perfect Splitting not possible in case of...

... odd cycles

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Perfect Splitting not possible in case of...

... odd cycles

bipartite graph!

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Perfect Splitting not possible in case of...

... odd cycles

bipartite graph!

... odd-degree vertices

O

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Perfect Splitting not possible in case of...

... odd cycles

bipartite graph!

... odd-degree vertices

O small technicality.

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Perfect Splitting not possible in case of...

... odd cycles

bipartite graph!

... odd-degree vertices

O small technicality.

Suppose that bipartite and even degree!

Il) Rounding Fractional Bipartite Matching

0(log? A) rounds, 0(1) loss

Sequential Perfect Splitting™

Repeat until all edges colored
pick arbitrary cycle
alternate]

* bipartite and even degree!

Il) Rounding Fractional Bipartite Matching

0(log? A) rounds, 0(1) loss

Sequential Perfect Splitting™

Repeat until all edges colored
pick arbitrary cycle
alternate]

* bipartite and even degree!

Il) Rounding Fractional Bipartite Matching

0(log? A) rounds, 0(1) loss

Sequential Perfect Splitting™

Repeat until all edges colored
pick arbitrary cycle
alternate]

o—C0

* bipartite and even degree!

Il) Rounding Fractional Bipartite Matching

0(log? A) rounds, 0(1) loss

Sequential Perfect Splitting™

Repeat until all edges colored
pick arbitrary cycle
alternate]

* bipartite and even degree!

Il) Rounding Fractional Bipartite Matching

0(log? A) rounds, 0(1) loss

Sequential Perfect Splitting™

Repeat until all edges colored
pick arbitrary cycle
alternate]

o—C0

=

* bipartite and even degree!

Il) Rounding Fractional Bipartite Matching

0(log? A) rounds, 0(1) loss

Sequential Perfect Splitting™

Repeat until all edges colored
pick arbitrary cycle
alternate]

o—C0

=

* bipartite and even degree!

Il) Rounding Fractional Bipartite Matching

0(log? A) rounds, 0(1) loss

Sequential Perfect Splitting™

Repeat until all edges colored
pick arbitrary cycle
alternate]

o—C0

Oo—0

|
v

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Sequential Perfect Splitting™

Repeat until all edges colored
pick arbitrary cycle
alternate]

LOCAL Almost-Perfect Splitting™

Decompose into edge-disjoint cycles
In parallel, for all cycles

A) Short cycles of length O(log A)
alternate]
B) Long cycles
chop at length O(log A)
set boundary to O
alternate] in between

* bipartite and even degree!

Il) Rounding Fractional Bipartite Matching

0(log? A) rounds, 0(1) loss

Sequential Perfect Splitting™

Repeat until all edges colored
pick arbitrary cycle
alternate]

LOCAL Almost-Perfect Splitting™

Decompose into edge-disjoint cycles
In parallel, for all cycles
A) Short cycles of length O(log A)

alternate]
B) Long cycles
chop at length O(log A)
set boundary to O
alternate] in between

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Sequential Perfect Splitting™

Repeat until all edges colored
pick arbitrary cycle
alternate]

LOCAL Almost-Perfect Splitting™

Decompose into edge-disjoint cycles
In parallel, for all cycles
A) Short cycles of length O(log A)
alternate]

B) Long cycles
chop at length O(log A)
set boundary to O
alternate] in between

* bipartite and even degree!

Il) Rounding Fractional Bipartite Matching

0(log? A) rounds, 0(1) loss

Sequential Perfect Splitting™

Repeat until all edges colored
pick arbitrary cycle
alternate]

LOCAL Almost-Perfect Splitting™

Decompose into edge-disjoint cycles
In parallel, for all cycles
A) Short cycles of length O(log A)
alternate]

B) Long cycles
chop at length O(logA)
set boundary to O
alternate] in between

-

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Sequential Perfect Splitting™

Repeat until all edges colored
pick arbitrary cycle
alternate]

LOCAL Almost-Perfect Splitting™

Decompose into edge-disjoint cycles
In parallel, for all cycles
A) Short cycles of length O(log A)
alternate]

B) Long cycles
chop at length O(log A)
set boundary to O
alternate] in between

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Sequential Perfect Splitting™

Repeat until all edges colored
pick arbitrary cycle
alternate]

LOCAL Almost-Perfect Splitting™

Decompose into edge-disjoint cycles
In parallel, for all cycles
A) Short cycles of length O(log A)
alternate]

B) Long cycles
chop at length O(log A)
set boundary to O
alternate] in between

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Sequential Perfect Splitting™

Repeat until all edges colored
pick arbitrary cycle
alternate]

LOCAL Almost-Perfect Splitting™

Decompose into edge-disjoint cycles
In parallel, for all cycles
A) Short cycles of length O(log A)
alternate]

B) Long cycles
chop at length O(log A)
set boundary to O
alternate] in between

* bipartite and even degree!

Il) Rounding Fractional Bipartite Matching

0(log? A) rounds, 0(1) loss

Sequential Perfect Splitting™

Repeat until all edges colored
pick arbitrary cycle
alternate]

LOCAL Almost-Perfect Splitting™

Decompose into edge-disjoint cycles
In parallel, for all cycles
A) Short cycles of length O(log A)
alternate]

B) Long cycles
chop at length O(logA)
set boundary to O
alternate] in between

* bipartite and even degree!

Il) Rounding Fractional Bipartite Matching

0(log? A) rounds, 0(1) loss

Sequential Perfect Splitting™

Repeat until all edges colored
pick arbitrary cycle
alternate]

LOCAL Almost-Perfect Splitting™

Decompose into edge-disjoint cycles
In parallel, for all cycles
A) Short cycles of length O(log A)
alternate]

B) Long cycles
chop at length O(logA)
set boundary to O
alternate] in between

f
|

AN

)

* bipartite and even degree!

N

Il) Rounding Fractional Bipartite Matching

0(log? A) rounds, 0(1) loss

Sequential Perfect Splitting™

Repeat until all edges colored
pick arbitrary cycle
alternate]

LOCAL Almost-Perfect Splitting™

Decompose into edge-disjoint cycles
In parallel, for all cycles
A) Short cycles of length O(log A)
alternate]

B) Long cycles
chop at length O(logA)
set boundary to O
alternate] in between

e

@)

e

E

N

..Iol

I

£ o

* bipartite and even degree!

Il) Rounding Fractional Bipartite Matching

0(log? A) rounds, 0(1) loss

Sequential Perfect Splitting™

Repeat until all edges colored
pick arbitrary cycle
alternate]

LOCAL Almost-Perfect Splitting™

Decompose into edge-disjoint cycles
In parallel, for all cycles
A) Short cycles of length O(log A)
alternate]
B) Long cycles
chop at length B(log A) "
set boundary to 0 Q) (l) loss
. 0gA
alternate] in between

e

@)

e

E

N

..Iol

I

£ o

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Sequential Perfect Splitting™

Repeat until all edges colored
pick arbitrary cycle
alternate]

LOCAL Almost-Perfect Splitting™

Decompose into edge-disjoint cycles
In parallel, for all cycles
A) Short cycles of length O(log A)
alternate]
B) Long cycles
chopat length ©(log A) "
set boundary to 0 Q) (l) loss
. 0gA
alternate] in between

N

..101

E

o
O

e

I
o—
£ o

* by Hanc¢kowiak, Karoriski, Panconesi [SODA’98,PODC’99] in O(log 4)

@)

* bipartite and even degree!

II) Rounding Fractional Bipartite Matching 0(log? A) rounds, 0(1) loss

Sequential Perfect Splitting™

Repeat until all edges colored
pick arbitrary cycle
alternate]

LOCAL Almost-Perfect Splitting™

Decompose into edge-disjoint cycles
In parallel, for all cycles
A) Short cycles of length O(log A)
alternate]
B) Long cycles
chopat length ©(log A) "
set boundary to 0 Q) (l) loss
. 0gA
alternate] in between

N

g,

Ll
XA

* by Hanc¢kowiak, Karoriski, Panconesi [SODA’98,PODC’99] in O(log 4)

il

@)

Over all O(log A) rounding iterations, total loss still constant! * bipartite and even degree!

Constant - Approximate Bipartite Matching 0(log? A) rounds

1) 4-Approximate Fractional Matching
O(log A) rounds

Il) Rounding Fractional Bipartite Matching
O(log? A) rounds, 0(1) loss

Constant - Approximate kate Matching

0(log? A) rounds

Constant - Approximate kate Matching

0(log? A) rounds

Constant - Approximate kate Matching

0(log? A) rounds

Constant - Approximate kate Matching

0(log? A) rounds

Constant - Approximate kate Matching 0(log? A) rounds

Constant-Approximate
¢ Bipartite Matching
0(log? A) rounds

Constant - Approximate B| ite Matching 0(log? A) rounds

Bipartite Matching
0(log? A) rounds

-
v

© E
* Constant-Approximate
o E

Constant - Approximate kate Matching 0(log? A) rounds

Bipartite Matching
0(log? A) rounds

o E :
* Constant-Approximate
0) E

Maximal Matching
in Degree-2-Graph
O(1) rounds,
O(1)-factor loss

Panconesi, Rizzi
[DIST’01]

vy

Constant - Approximate Matching

0(log? A) rounds

Maximal

O(log”® A -logn)

Constant - Approximate Matching

0(log? A) rounds

Maximal

O(log”® A -logn)

o—O
O

O

O
o

i/

KOU
o o
fv

%

Constant - Approximate Matching

0(log? A) rounds

Maximal

O(log”® A -logn)

5
s

o—O
O

O

O 0
o

K
o

nn\od/c|>o\
PN PR
\J/

Constant - Approximate Matching

0(log? A) rounds

Maximal

O(log”® A -logn)

o—O
O

O

O 0
o

K
o

000000

000000
(0]

OO0 000

Constant - Approximate Matching

0(log? A) rounds

Maximal O(log”® A -logn)
o Q P T

o o °l ¥ o o o o

ol o o o o o
o o o o| o o
o o lo o o= o o

of o o o o| o >
o o o o V -

Constant - Approximate Matching

0(log? A) rounds

O(log”® A -logn)

Maximal
e o © T
o)
o o o o o O o
ol o o o o o
o o o) o) 0 o
o o lo o o o o
Ol o o o) o o
o 0 0 o V -0

Constant - Approximate Matching

0(log? A) rounds

O(log”® A -logn)

Maximal
o o © I
o of®° o o o o o
ol o o o o 0
0 o o o o o
0 o lo o o o >
Ol o o o o) o
0 o o o V)

Constant - Approximate Matching

0(log? A) rounds

Maximal

O(log”® A -logn)

000000

000000
OO0 00O00O0

000000

L{UU?()—-O

O

l

O 00000

g &—

Constant - Approximate Matching

0(log? A) rounds

Maximal

O(log”® A -logn)

000000

000000
(0]

OO0 00O0O0

000000

OO0 0O0O0O0

00 000 010

o
o

Constant - Approximate Matching 0(log? A) rounds

Maximal O(log”® A -logn)

00 000 010

000000
000000

OO0 00O0O0
000000
OO0 0O0O0O0

o
o

maximum matching size in remainder graph decreases by constant factor

Constant - Approximate Matching 0(log? A) rounds

Maximal O(log”® A -logn)

00 000 010

000000
000000

OO0 00O0O0
000000
OO0 0O0O0O0

maximum matching size in remainder graph decreases by constant factor

after O(log n) iterations, maximum matching size is 0, hence graph empty

Open Question: O(logA - logn)?

What is Locality of Maximal Matching?

Thank you!

Open Question: O(logA - logn)?

What is Locality of Maximal Matching?

	Slide 1: The Locality of Maximal Matching
	Slide 2: Locality
	Slide 3: Locality
	Slide 4: Locality
	Slide 5: Locality
	Slide 6: Locality
	Slide 7: LOCAL Model Linial [FOCS’87]
	Slide 8: LOCAL Model Linial [FOCS’87]
	Slide 9: LOCAL Model Linial [FOCS’87]
	Slide 10: LOCAL Model Linial [FOCS’87]
	Slide 11: LOCAL Model Linial [FOCS’87]
	Slide 12: LOCAL Model Linial [FOCS’87]
	Slide 13: LOCAL Model Linial [FOCS’87]
	Slide 14: LOCAL Model Linial [FOCS’87]
	Slide 15: LOCAL Model Linial [FOCS’87]
	Slide 16: LOCAL Model Linial [FOCS’87]
	Slide 17: LOCAL Model Linial [FOCS’87]
	Slide 18: LOCAL Model Linial [FOCS’87]
	Slide 19: LOCAL Model Linial [FOCS’87]
	Slide 20: LOCAL Model Linial [FOCS’87]
	Slide 21: LOCAL Model Linial [FOCS’87]
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162

