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standard synchronous message-passing model of distributed computing

 undirected graph G = (V, E),
n nodes, maximum degree A

e each round, every node
* receives messages (sent in previous round)
* performs some computation
* sends message to all its neighbors

* unbounded message size

* unbounded computation

 Round Complexity:
number of rounds to solve the problem

round complexity of a problem in the LOCAL model characterizes its locality
every problem is trivially solvable in O(diameter) rounds
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Classic LOCAL Graph Problems

Maximal Independent Set

(A + 1)-Vertex-Coloring

Maximal Matching
./-0 ? o 90

Tyt
“

(2A — 1)-Edge-Coloring

Easy centralized problems: greedy solutions.
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In worst case F., Noever [SODA’18]
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Our Result

deterministic O (log” A - log n)-round Maximal Matching

Improving over

0 (log* n)
Hanckowiak, Karonski, Panconesi [SODA’98, PODC'99]

O(A + log* n)
Panconesi, Rizzi [DIST'01]



Overview of Results

Maximal Matching
e Maximal Matching O(log? A - logn)
e Randomized Maximal Matching O(log3logn + log A)

Approximate Matching

* (2 + ¢) - Approximate Maximum Matching log? A - log §+ log™n

(2 + €) - Approximate Maximum Weighted Matching

log? A - log % + log* n

log? A - log = + log” n)
&
* (24 ¢€) - Approximate Maximum B-Matching )

* (2 + ¢) - Approximate Maximum Weighted B-Matching log? A - log i + log™ n

log?A - logl)

 ¢-Maximal Matching -

log?A - logé)

o
o
o
o
o
o

(2 + ¢) - Approximate Minimum Edge Dominating Set
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0(log? A) rounds, 0(1) loss

Factor-2-Rounding
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using Locally Balanced Splitting,
inspired by
Hanckowiak, Karonski, Panconesi [SODA’98 PODC’99]
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