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Beyond Autoregression:
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Claim: Modelling choice matters!

Target sequence:

Input sequence:



Modelling Choices for Sequences
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Autoregressive Modelling

Forward Process

Backward Process

Task: model a sequence

Discrete Diffusion Modelling

from the data distribution
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Autoregressive Modelling

Forward Process
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Very Short History of Diffusion Modelling
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Sohl-Dickstein et al. 2015

Ho et al. 2020



Momentum in Diffusion Modelling for Discrete Problems
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2022: Diffusion LM, Li et al.

2021:

Hoogeboom et al.

Austin et al.
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Establish Superiority of DDM vs AR
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• Synthetic Graph Task

− Input: shuffled edges of a graph, start and goal node

− Goal: output edges from start to goal node

• Difficulty: Choosing the next node at node 7

− Model has to look 3 nodes ahead

− «Planning Distance»



Establish Superiority of DDM vs AR
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• Experimental Setup:

− 10 nodes

− 1 crossing at random location

− symmetric around the crossing

50k Samples

Accuracy per PD

Data for

90% accuracy per PD
• Scaling the models:

− 3-Layer transformer, 6B params

− LLaMA 7B

 Take-away:

 Tokens vary in difficulty to predict!

→ «Subgoal Imbalance»



Establish Superiority of DDM vs AR
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• Subgoal: Task of predicting a certain token 𝑛.

• Subgoal Imbalance

• Proposition: 

→ Difficulty of learning a certain subgoal depends on 

the underlaying model.



Token-level loss as common ground
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• Full input:



Checking for Subgoal Imbalance

06.05.2025 21

Negative Log-Likelihood

for fixed PD = 3

Cross entropy loss

Over 1K samples

NLL with only

AR style contextTake-aways:

→ Modelling choice impacts difficulty

→ Many views help the model learn (Sudoku intuition)

→ Especially interesting for hard subgoals



Multi-Granularity Diffusion Modelling (MGDM)
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Experiments - Countdown 
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Training from scratch

In-Context Learning

85M



Experiments - Sudoku
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Limitations:

• Only easy Sudokus

• Experiment scope very small



Experiments - Boolean Satisfiability Problem (SAT)
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Ablation Studies
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Model Speed at Inference
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• Models

− AR: GPT-2 Scratch 85M

− DM: MGDM 85M

• Metric:

− Samples processed per second

• Diffusion Model can adapt 

#denoising steps

Samples per second
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Error Analysis
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• Models

− AR: GPT-2 Scratch 85M

− DM: MGDM 85M

• Metrics:

− Ratio of calculation errors:

− Ratio of planning errors:

→ Equation at which model fails the task
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Beyond Autoregression - Contributions
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• Show DDM outperform AR in reasoning and planning

− Highlight ARs limitations

• Explain why DM are stronger on reasoning through the lense of Subgoal Imbalance

• Propose Multi-Granular Diffusion Modelling (MGDM)

− Better loss and accuracy

− Faster convergence

− Theoretically motivated

• Paper has clear scope



Beyond Autoregression - Limitations
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• Experiments

− Plots not well introduced, axes not 0 aligned

− Limited task diversity

− Non-satisfactory complexity of experiments (Sudoku, Countdown

− Metrics not properly introduced

− Testes only on short outputs

− Limited ablation studies

− Teacherless and reverse AR not tested on «real» tasks

− No generalization experiments, less/more complex instances



Beyond Autoregression - Limitations
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• Missing quantification of training cost

• Theoretically motivated but no further analysis

− Convergence guarantees

• Lacking interpretability compared to LLMs

• Connection to trendy LLMs missing

− No mention how this extends to general language generation
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MGDM is a promising proof-of-concept

but practicality, robustness, and applicability 

remain to be explored
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Thank you for your attention!



Backup: Algorithms
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Backup: Maths

Organisationseinheit verbal 06.05.2025 38

alpha_t: forward mask survival probability

→ defines the noise schedule

w(t): probability of a token to become masked at timestep t

→ Each token counted once in expectation over all noise steps
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