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“A photograph of a cat wearing a superman costume”
2Image generated using Stable Diffusion.



“A photograph of an astronaut riding a horse”
3Image generated using Stable Diffusion.



Diffusion – short introduction
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“Mushroom” “Palace”
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Score matching
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Score vector



Classifier Free Guidance - CFG
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Score vector

• How can prompt alignment be boosted?



Classifier Free Guidance - CFG
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“More prompt”



Classifier Free Guidance - CFG
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Unconditional denoiser

Conditional denoiser



Classifier Free Guidance - CFG
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Unconditional denoiser

Conditional denoiser



Classifier Free Guidance - CFG
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Unconditional denoiser

Conditional denoiser

CFG



Classifier Free Guidance - CFG

𝐷𝟏 𝐷𝟎

CFG Conditional Denoiser Unconditional Denoiser
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𝑤 = 1 𝑤 = 2 𝑤 = 3

“Mushroom”

“Palace”
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Score Matching leads to image artifacts

• Behaves similarly to maximum likelihood estimation

• Extreme penalties for underestimating likelihood of any sample

• Can restrain model‘s ability to focus on common patterns
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Score Matching leads to outliers

Ground Truth No Guidance
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How does CFG work?

Conditional Unconditional Conditional - Unconditional
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Conditional Unconditional Conditional - Unconditional

CFG
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Conditional Unconditional Conditional - Unconditional

CFG
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Conditional Unconditional Conditional - Unconditional

CFG
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Conditional Unconditional Conditional - Unconditional

CFG
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Conditional Unconditional Conditional - Unconditional

CFG
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How is it in comparison? 

Ground Truth No Guidance CFG
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New method - Autoguidance

𝐷𝟏 𝐷𝟎

CFG Conditional Denoiser Unconditional Denoiser

Autoguidance Conditional Denoiser Worse Conditional Denoiser
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Conditional Unconditional Conditional - UnconditionalWorse Conditional Conditional – Worse 
Conditional

CFG Autoguidance
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Conditional Unconditional Conditional - UnconditionalWorse Conditional Conditional – Worse 
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Conditional Unconditional Conditional - UnconditionalWorse Conditional Conditional – Worse 
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How is it in comparison? 

Ground Truth No Guidance CFG Autoguidance
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CFG

Autoguidance

𝑤 = 1 𝑤 = 2 𝑤 = 3𝑤 = 3 𝑤 = 2𝑤 = 1

“Mushroom” “Palace”
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Fréchet inception distance (FID)

• Metric to assess the quality of images created by a generative 
model

• Measures the distance between distribution of generated and real 
images
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Autoguidance in practice

• Assumption: 
𝐷1 and 𝐷0 must suffer from the same kind of degradation.
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Experiment: Undoing the damage from
synthetic degradations

• Base model: EDM2-S trained on ImageNet-512

• Dropout: Added in a post-hoc fashion

• Input  noise: Increased noise level of input images
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Base Model FID: 2.56 

𝐷𝟏 𝐷𝟎 FID𝐷𝟏 FID𝐷𝟎 FID guided

Dropout 5% Dropout 10% 4.98 15.00 2.55

Input noise 10% Input noise 20% 3.96 9.73 2.56

Dropout 5% Input noise 20% 4.98 9.73 20.00
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Which guiding models help?

• Same task and data, significant quality gap
• These worked:

• Fewer layers and/or features
• Less training

• These didn‘t:
• Manual degradations (dropout, input noise, …)
• Weight quantization
• Smaller dataset
• Fundametally different generations of models, e.g. SD3 + SD2

35



ImageNet-512 FID
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ImageNet-512 performance

Method FID 𝑤

EDM2-S
+ Classifier-free guidance

+ Guidance interval
+ Autoguidance (XS, T/16)

- Reduce training only
- Reduce capacity only

2.56
2.23
1.68
1.34
1.51
2.13

-
1.40
2.10
2.10
2.20
1.80

EDM2-XXL
+ Classifier-free guidance

+ Guidance interval
+ Autoguidance (M, T/3.5)

1.91
1.81
1.40
1.25

-
1.20
2.00
2.05

EDM2-S, unconditional
+ Autoguidance (XS, T/16)

11.67
3.86

-
2.85
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Additional training cost

𝐷𝟏 𝐷𝟎 Mparams𝐷𝟏 Mparams𝐷𝟎 n iterations Additional cost %

EDM2-XXL EDM2-M 1523 498 1/3.5 11

EDM2-S EDM2-XS 280 125 1/16 3.6
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Interpolation between CFG and Autoguidance

“A blue jay standing on a large basket of rainbow macarons”
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Conclusion & Discussion

• Control over quality/variation tradoff

• Broader applicability than CFG

• Good rules of thumb for guiding models

• Explore noise level-dependent guidance weight
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