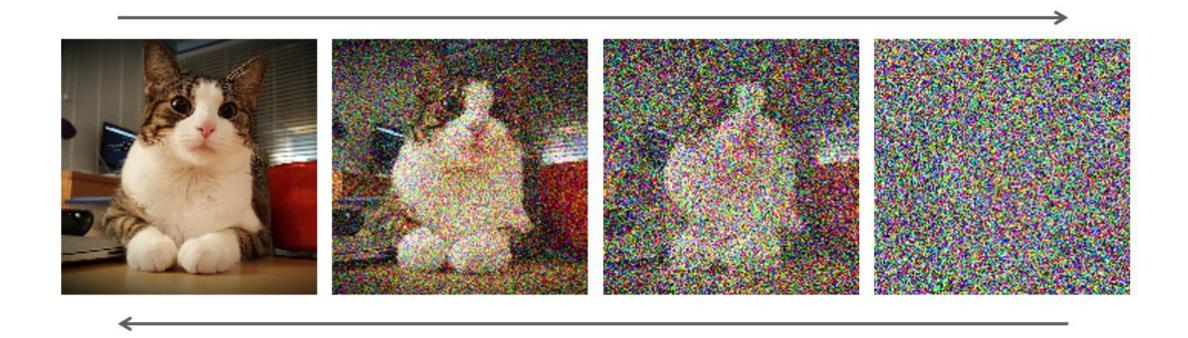


"A photograph of a cat wearing a superman costume"

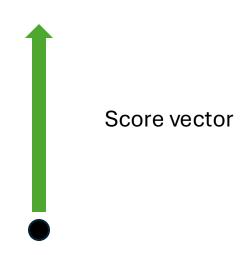
"A photograph of an astronaut riding a horse"

Diffusion – short introduction

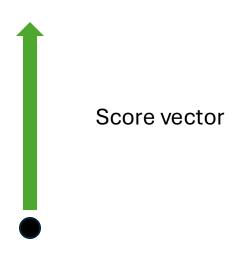


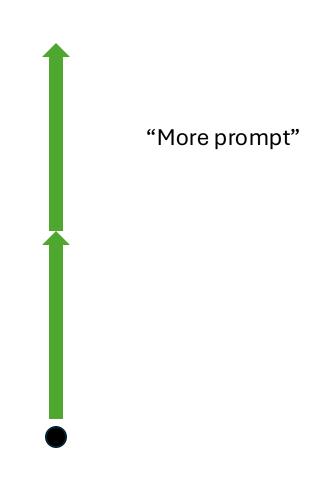
"Mushroom" "Palace"

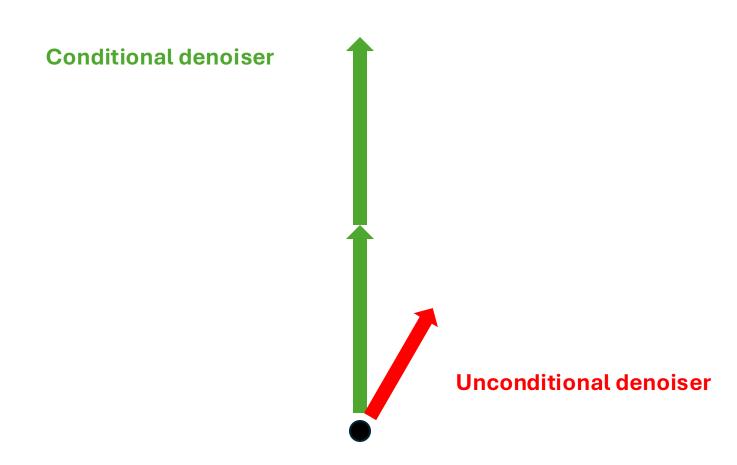
Score matching

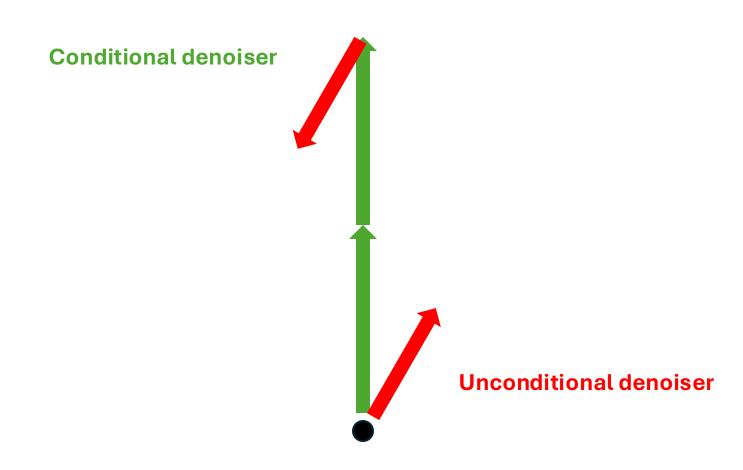


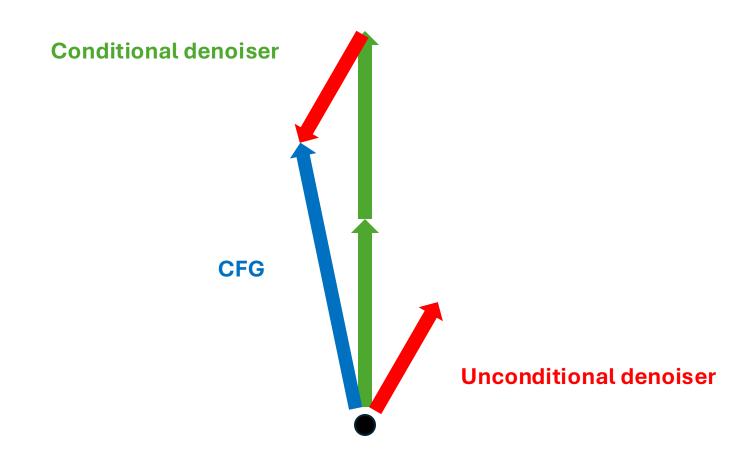
How can prompt alignment be boosted?











$$D_w(\mathbf{x}; \sigma, \mathbf{c}) = wD_1(\mathbf{x}; \sigma, \mathbf{c}) + (1 - w)D_0(\mathbf{x}; \sigma, \mathbf{c})$$

	D_{1}	D_{0}
CFG	Conditional Denoiser	Unconditional Denoiser

w = 1 w = 2 w = 3

"Mushroom"

"Palace"

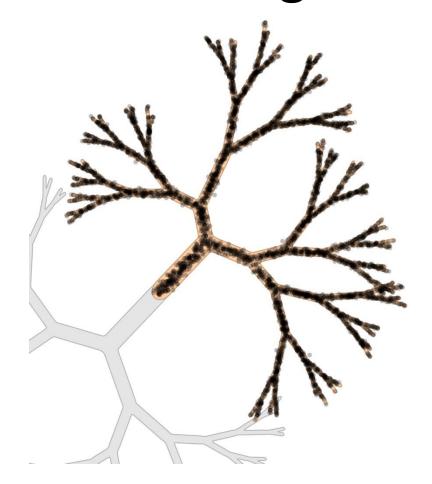
Score Matching leads to image artifacts

• Behaves similarly to maximum likelihood estimation

Extreme penalties for underestimating likelihood of any sample

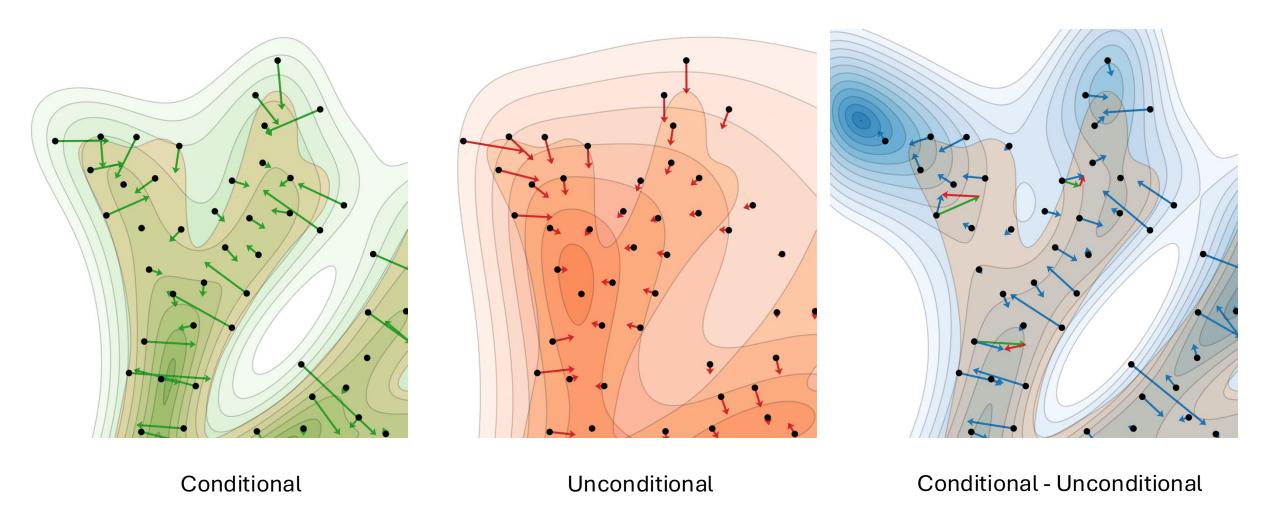
Can restrain model's ability to focus on common patterns

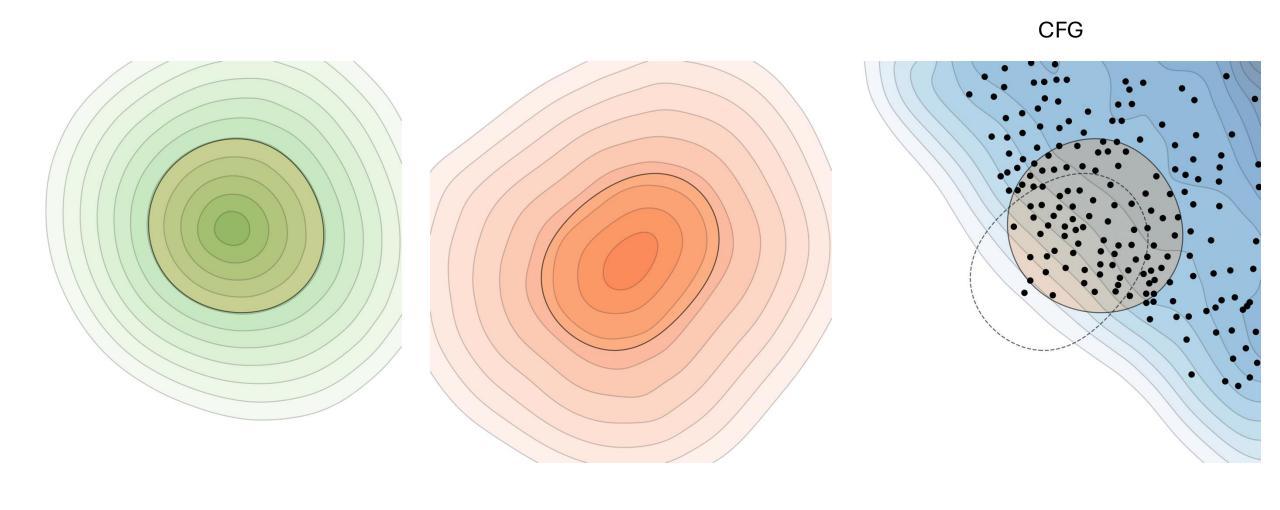
Score Matching leads to outliers



Ground Truth No Guidance

How does CFG work?

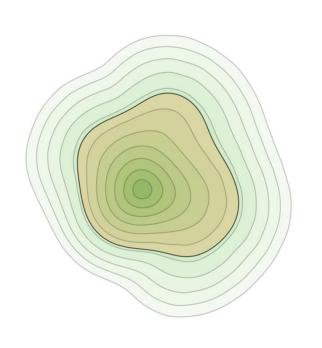


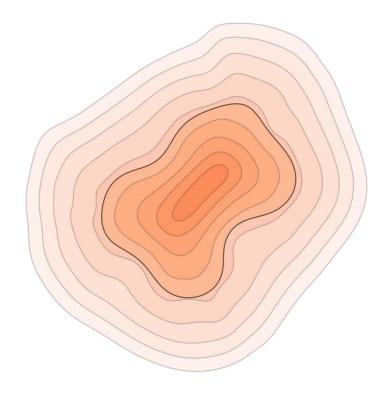


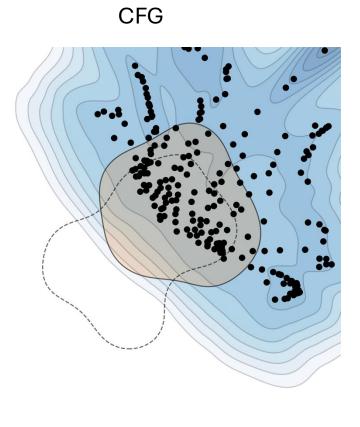
Unconditional

Conditional

[1]



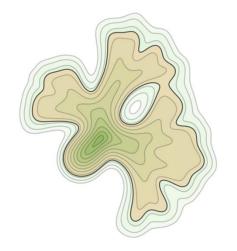


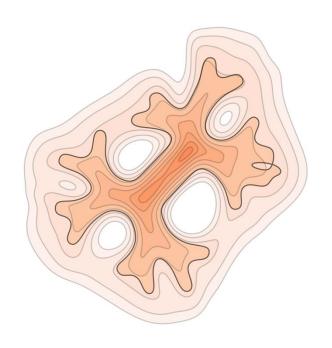


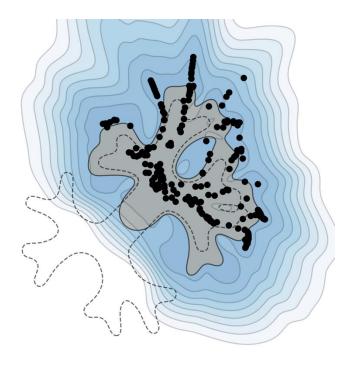
Conditional

Unconditional

Conditional - Unconditional

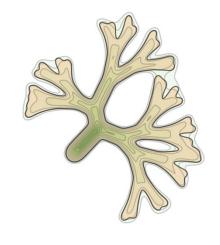


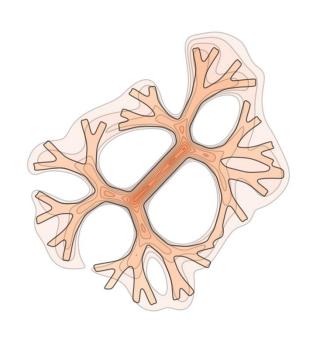


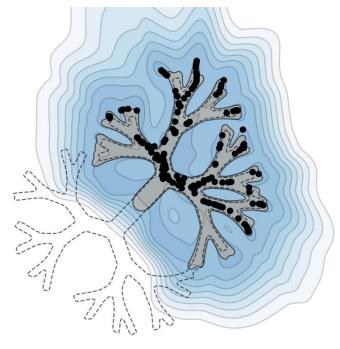


Conditional

Unconditional

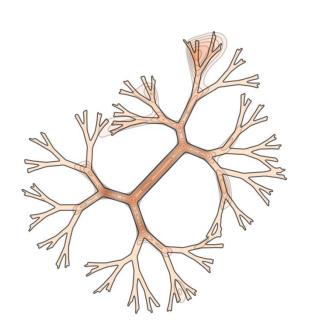


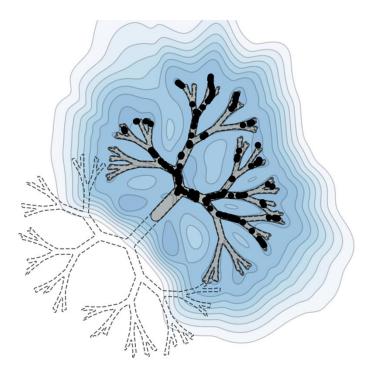




Conditional

Unconditional

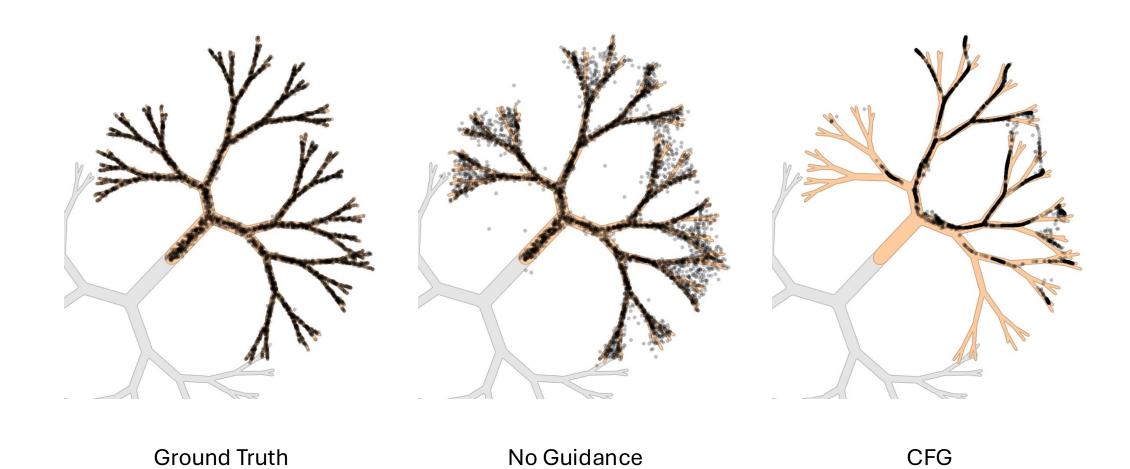




Conditional

Unconditional

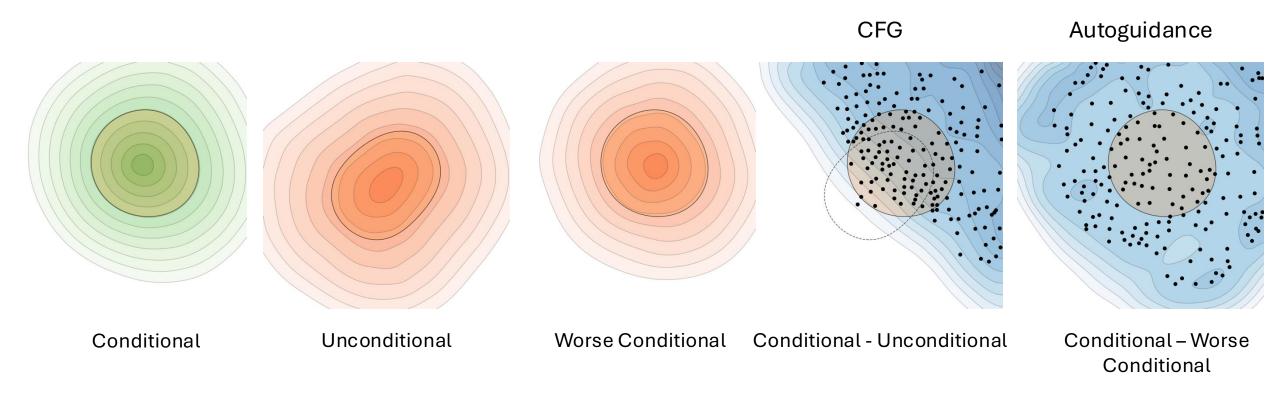
How is it in comparison?



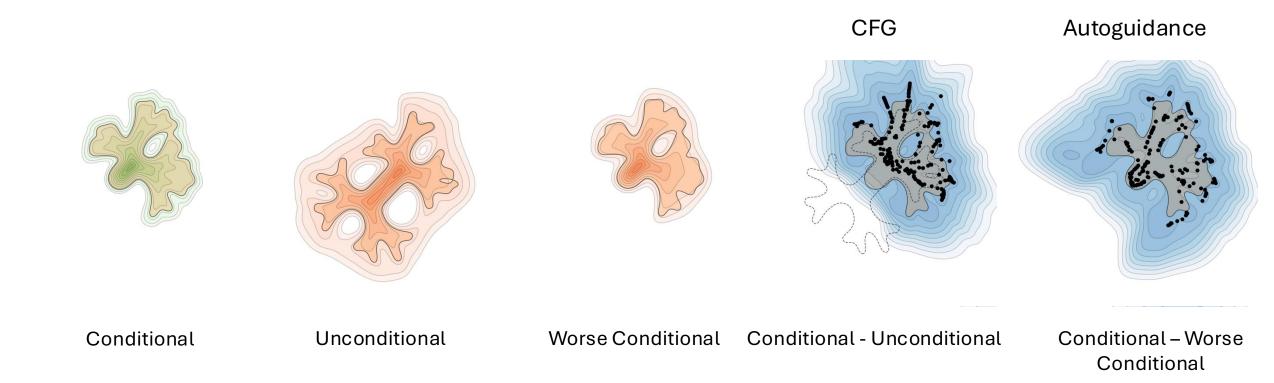
New method - Autoguidance

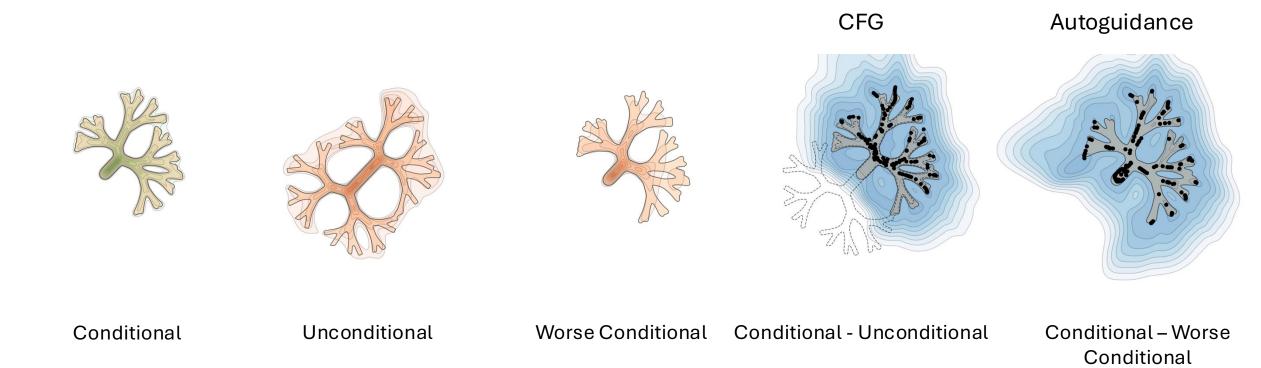
$$D_w(\mathbf{x}; \sigma, \mathbf{c}) = wD_1(\mathbf{x}; \sigma, \mathbf{c}) + (1 - w)D_0(\mathbf{x}; \sigma, \mathbf{c})$$

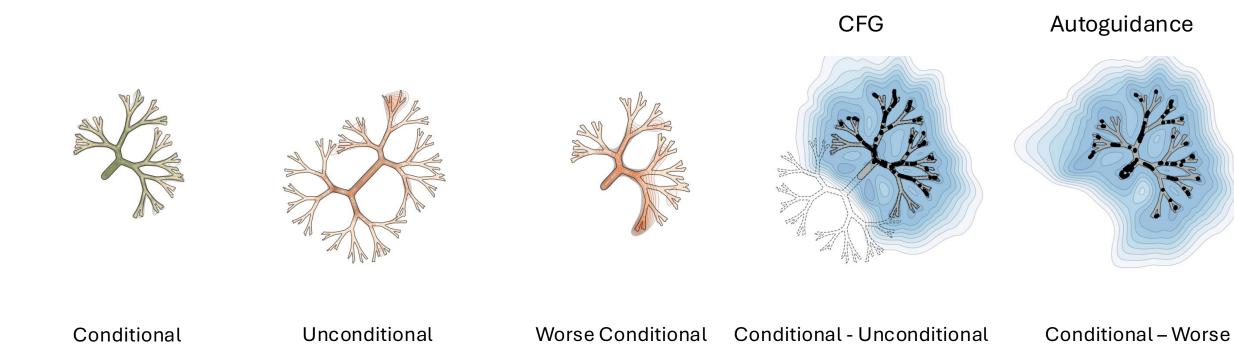
	D_1	D_{0}
CFG	Conditional Denoiser	Unconditional Denoiser
Autoguidance	Conditional Denoiser	Worse Conditional Denoiser





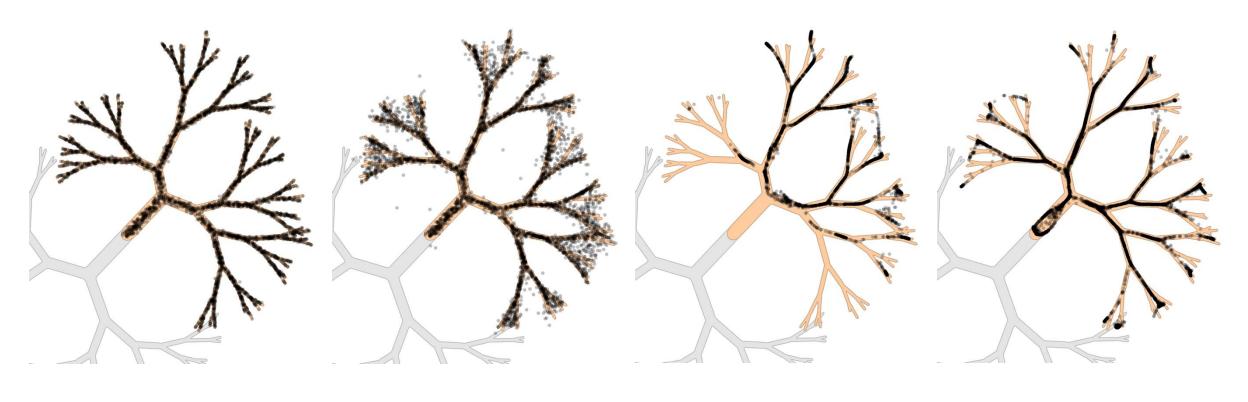






Conditional

How is it in comparison?



Ground Truth No Guidance CFG Autoguidance

w = 1

w = 2

w = 3

w = 1

w = 2

w = 3

CFG

Autoguidance

"Mushroom"

"Palace"

[1]

30

Fréchet inception distance (FID)

 Metric to assess the quality of images created by a generative model

 Measures the distance between distribution of generated and real images

Autoguidance in practice

• Assumption:

 D_1 and D_0 must suffer from the same kind of degradation.

Experiment: Undoing the damage from synthetic degradations

• Base model: EDM2-S trained on ImageNet-512

• Dropout: Added in a post-hoc fashion

• Input noise: Increased noise level of input images

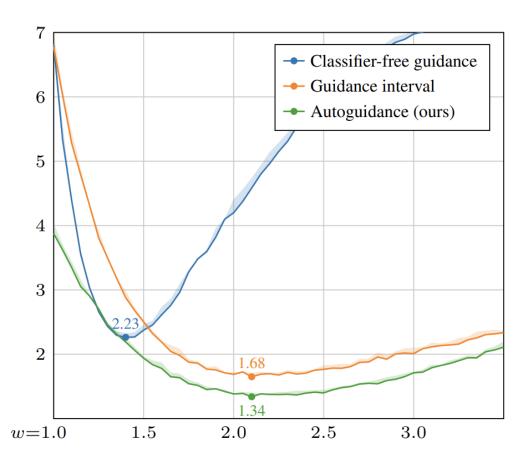
Base Model FID: 2.56

D_1	$D_{f 0}$	FID $D_{f 1}$	FID $D_{f 0}$	FID guided
Dropout 5%	Dropout 10%	4.98	15.00	2.55
Input noise 10%	Input noise 20%	3.96	9.73	2.56
Dropout 5%	Input noise 20%	4.98	9.73	20.00

Which guiding models help?

- Same task and data, significant quality gap
- These worked:
 - Fewer layers and/or features
 - Less training
- These didn't:
 - Manual degradations (dropout, input noise, ...)
 - Weight quantization
 - Smaller dataset
 - Fundametally different generations of models, e.g. SD3 + SD2

ImageNet-512 FID



ImageNet-512 performance

Method	FID	W
EDM2-S	2.56	-
+ Classifier-free guidance	2.23	1.40
+ Guidance interval	1.68	2.10
+ Autoguidance (XS, T/16)	1.34	2.10
- Reduce training only	1.51	2.20
- Reduce capacity only	2.13	1.80
EDM2-XXL	1.91	-
+ Classifier-free guidance	1.81	1.20
+ Guidance interval	1.40	2.00
+ Autoguidance (M, T/3.5)	1.25	2.05
EDM2-S, unconditional	11.67	-
+ Autoguidance (XS, T/16)	3.86	2.85

Additional training cost

D_{1}	D_{0}	Mparams $D_{f 1}$	Mparams $D_{f 0}$	n iterations	Additional cost %
EDM2-XXL	EDM2-M	1523	498	1/3.5	11
EDM2-S	EDM2-XS	280	125	1/16	3.6

[3]

Conclusion & Discussion

Control over quality/variation tradoff

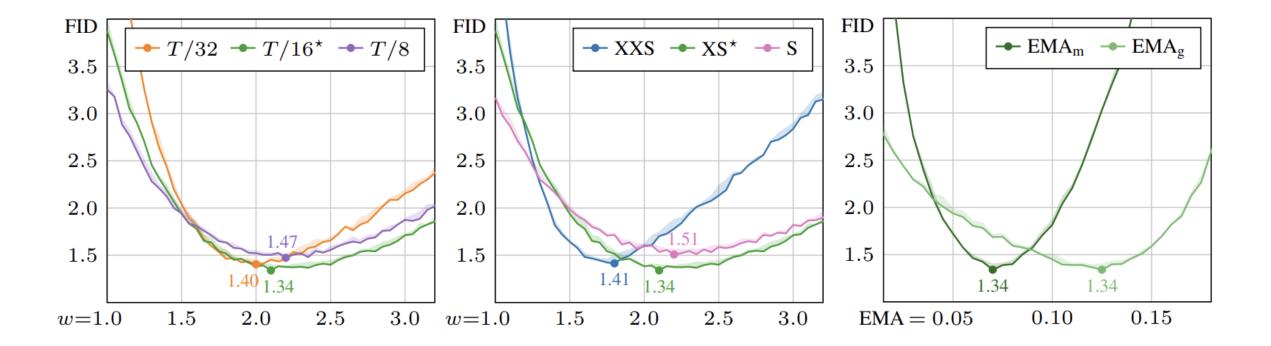
Broader applicability than CFG

Good rules of thumb for guiding models

Explore noise level-dependent guidance weight

References

- [1] Karras, Tero, et al. "Guiding a diffusion model with a bad version of itself." *Advances in Neural Information Processing Systems* 37 (2025): 52996-53021.
- [2] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance." arXiv preprint arXiv:2207.12598 (2022).
- [3] Karras, Tero, et al. "Analyzing and improving the training dynamics of diffusion models." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.



Autoguidance

CFG