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Image compression is already “solved”, isn't it?



Why deep learning based image compression?

Classical Deep learning
(HEVC) (CompressAl)




How deep learning based image compression?
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COOL-CHIC & | Entropy coding
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COOL-CHIC &) | Objective

gnl/ir; Dist (x, fg(Upsample(Z))) — A -log, py(2)
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COOL-CHIC &) | Quantization awareness

Stage 1 VouwzLey(z+u) u ~ Uniform(0,1)

Stage 2 VoL y(l2]) and vzﬁgﬂp(lz-l)



How to measure the quality of reconstructed images?



Distortion metrics
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We have everything we need?
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Wasserstein distance

W, (u,v) = | min 2 ||xl x]||
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Wasserstein distance considers the distributions’ geometries

W,(uw,v) =096 W,(u,v) =171
Dy, (ullv) =0.14 Dy, (u V) =0.14




Approximating Wasserstein distance via Gaussians

Q0/1~ N('“O/l'vg/l) : W>(Qo, Q1) = \/(#0 — 11)?% + (vg — vp)?
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first moments

second moments
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Approximating the Gaussian approximation
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Wasserstein distortion (WD)

[2]

A. Extract VGG features B. Compute featurewise local statistics C. Compute & aggregate featurewise WD
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o0 enables controlling the “Pixel-level fidelity’-“Perceptual quality” trade-off

o small 9 o large
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Putting this all together ...



BPP =0.075

C3/MSE C3/WD

22



C3/WD
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Original
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Saliency

C3/MSE + saliency

C3/WD + saliency
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Integrating common randomness (CR)

C3 without CR

C3 with CR
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The (now truly) final pipeline
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C3/WD exhibits competitive reconstruction quality ...

[2]
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... with very high decoding speed
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Wasserstein distortion as a predictor for human evaluation

[2]

Metric % correct CO(rIgeCI:aCt)lon
PSNR 61% 36
MS-SSIM 65% 54
NLPD 64% 54
LPIPS 70% 71
DISTS 67% 73
PIM-5 70% 76
WD fixed o 73% 94
WD saliency map 73% 94
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So, a perfect Image compression technique?



Encoding speed ...

~1 hour per image

on NVIDIA V100 GPU
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“Good, Cheap, and Fast™?



Conclusion

Approach _\é Methodological critique @
Good visual reconstruction quality, ) Somewhat “chaotic” comparisons
Cheap in terms of bit rate, °  Limited human study (5 participants)

Fast decoding, at the cost of _ _
+ Transparency: Provided images

Slow encoding and evaluation results

N

) Not entirely novel approach, but a successful integration of existing techniques
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Looking at the raw survey results

When did the respondents take the survey?
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How is the deviation between the respondents?
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Discussion
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Further sources

Images: Kodak lossless true color image suite (link) and CLIC 2020 validation dataset (download)
Memes: Copied from [a] link and [b] link
Data on slide 13: CLIC 2024 challenge task “image@0.075bpp” (link)
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https://r0k.us/graphics/kodak/
https://data.vision.ee.ethz.ch/cvl/clic/professional_valid_2020.zip
https://www.kapwing.com/explore/theyre-the-same-picture-meme-template
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.reddit.com%2Fr%2FDoctorWhumour%2Fcomments%2F1dsvpe2%2Fwhat_was_he_doing_while_the_tardis_was_stuck%2F&psig=AOvVaw2J-t-3cqbueYbKk4ni0yJC&ust=1744130304869000&source=images&cd=vfe&opi=89978449&ved=0CBIQ3YkBahcKEwiw7eOEr8aMAxUAAAAAHQAAAAAQPg
https://clic2024.compression.cc/leaderboard/image_0_075/test/
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