Training LLM to Reason in a
Continuous Latent Space

Menelik Nouvellon

some background & motivation: Why Continuous (Latent) Reasoning?

Chain-of-Thought (CoT) Reasoning: What & Why

[1] Jason Wei, Xuezhi Wal
https://doi.org/10.4:

Chain-of-Thought Prompting

o

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A:
The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have?

J

A:

The
answeris 9. ¢/

ng, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. (2022)

rXiv.2201.11

https://doi.org/10.48550/arXiv.2201.11903

Recent examples of CoT (extension of CoT)

[2] DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning (2025)
https://doi.ora/10.48550/arXiv.2501.12948

DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning

DeepSeek-Al
research@deepseek.com
Abstract

We introduce our first-generation reasoning models, DeepSeek-R1-Zero and DeepSeek-R1.
DeepSeek-R1-Zero, a model trained via large-scale reinforcement learning (RL) without super-

vised fine-tuning (SFT) as a preliminary step, d rates remarkable reasoning capabilities.
Through RL, DeepSeek-R1-Zero naturally emerges with numerous powerful and intriguing
reasoning behaviors. However, it challenges such as poor readability, and 1

mixing. To address these issues and further enhance reasoning performance, we introduce
DeepSeek-R1, which incorporates multi-stage training and cold-start data before RL. DeepSeek-
R1 achieves performance comparable to OpenAI-01-1217 on reasoning tasks. To support the
research community, we open-source DeepSeek-R1-Zero, DeepSeek-R1, and six dense models
(1.5B, 7B, 8B, 14B, 32B, 70B) distilled from DeepSeek-R1 based on Qwen and Llama.

o St 1 217 S 1-32B 3

97355,
o

192100

Accuracy / Percentile (%)

AIME 2024

Figure 1 | Benchmark performance of DeepSeek-R1.

https://doi.org/10.48550/arXiv.2501.12948

So why do we need latent continuous reasoning ?

Motivation #1: Information Loss in Text Decoding

Chain-of-Thought (CoT)

output token X; Xip1| Xio Xy [Answer]
(sampling)

last hidden state

input embedding

input token [Question] = %; Xit1 | Xig2 Xij

Motivation #2: Avoiding Filler & Overhead

Question:

“The cafeteria had 23 apples. They used 20 to make lunch, then bought 6 more. How many apples do
they have now?”

Reasoning:

1) The cafeteria started with 23 apples. filler phrases
2) They used 20 apples for lunch, leaving 3 apples.

3) Next, they bought 6 more apples, so 3 +6 = 9.

Hence, the final answer is 9.

Core math: All that’s really needed is: “23-20=3;3+6 =9

Motivation #3: Parallel Exploration & Backprop

Text: Early Commitment Continuous: Parallel Exploration B aCka'Op agat ion
@
AN
X
Example : Text: Early Commitment Continuous: Parallel
1 1
A B C A B C

B 000

Motivation #4: Better Generalization

Step 1

Step 2

Step 3
.) O

@)

Textual reasoning Continuous reasoning

Text CoT is good but has overhead, can be rigid.

Latent Reasoning might preserve richer signals, allow branching,
skip filler.

End-to-End optimization could push better multi-step
performance.

Now let's dive into the paper

Coconut: “Chain of Continuous Thought”

Chain-of-Thought (CoT) Chain of Continuous Thought (CoconuT)

Last hidden states are used
as input embeddings [Answer]

Large Language Model

input token [Question] X% = Xip1 Xy Xitj [Question] <bot> <eot>

output token X, | X1 Xigo Xiyj [Answer]
(sampling)

last hidden state

Large Language Model

input embedding

Inference in Coconut: Big Picture

[Question] <bot> Thought Thought \BL6T1d) <eot> [Answer]

signal to jump [Latent Steps] signal to output
to latent mode answer

Where do we put the <eot> ?

aka Where should the latent reasoning stop ?

Binary Class O
— —‘

‘ Classifier

Input ‘

Class 1

option 1

L

CONSTANT
LENGTH

option 2

Step-by-Step Example

Biff the Bear buys 3 honey pots.
Each honey pot costs 5 honey coins.

Question: “How many honey coins does Biff pay in
total?”

Normal CoT inference Coconut Inference

Reasoning:

1) Biff buys 3 pots, each costs 5 honey coins.
2) Multiply 3 by 5, that equals 15.

Therefore, Biff must pay 15 honey coins total.

<bot>[... latent steps ...] <eot>
Final Answer: 15 honey coins

Now let’s look at the training process

Baseline : pre-trained GPT 2

finetuned with
CoT instances

\V/

GPT-2 with Textual CoT

Baseline : pre-trained GPT 2

finetuned with
CoT instances

> GPT-2 with Textual CoT

AKA

< >
GPT2 == Patasetsiof Sproblems: GPT-2 with Textual CoT

<ReasoningSteps><Answer>

Baseline : pre-trained GPT 2

finetuned with
CoT instances

> GPT-2 with Textual CoT

GPT2 - Coconut

Language CoT

e [Question] [Step 1] [Step 2] [Step 3] **- [Step N] [Answer] [Thought] : continuous thought
(training data)

[---]: sequence of tokens
<-+->: special token
-+ calculating loss

Stage O [Question] <bot> <eot> [Step 1] [Step 2] --- [Step N] [Answer
Stage 1 [Question] <bot>]

Stage 2 [Question] <bot> i

Stage N [Question] <bot>

Why Not Jump Immediately to All Latent Steps?

f

< SN

. Q&
N ,
:{TEXT& { TEXT ' tﬂ(%)

N e

——

Why do use multi-stage curriculum ?

GSMS8k ProntoQA ProsQA
Method

Acc. (%) # Tokens Acc. (%) # Tokens Acc. (%) # Tokens

CoconNuT (Ours) /34.1 +1.5 8.2 99.8 +0.2 9.0 97.0 +0.3 14.2
- w/o curriculum \14.4 +0.8 8.2 52.4 +o0. 9.0 76.1 +o. 14.2

The LLM still needs quidance to learn latent reasoning

Inference: hidden steps, all in continuous latent space

Training: multi-stage replacement of textual steps -- this is called
multi-stage curriculum

Architecture: special tokens <bot> and <eot> mark the
boundaries of latent reasoning,

What about their result & experiment ?

Experimental Setup

Math

GSMS8k dataset of 8.5K grade school math word problems created by
i human problem writers

<problem>: <ReasoningSteps><finalAnswer>

Experimental Setup

Math Logical Reasoning

<problem> : <ReasoningSteps><finalAnswer> ProntoQA PI"OSQA

(B
(B-®
® E

simple chain logic graph

ProntoQA : "Stella is a zumpus. Zumpuses are gorpuses... Is Stella floral?"
ProsQA : "Tom is a terpus. Every terpus is a brimpus..."

Now the match that everyone have been waiting for...

® CoT vs Coconut @

GSMS8k ProntoQA ProsQA
Method

Acc. (%) # Tokens Acc. (%) # Tokens Acc. (%) # Tokens

CoT 42.9 +0.2 25.0 08.8 +0.8 92.5 77.5 £1.9 49.4

CocoNUT (Ours) 34.1 +1.5 8.2 99.8 +0.2 9.0 97.0 +0.3 14.2

Math

Method GSMS8k ProntoQA ProsQA

Acc. (%) # Tokens| Acc. (%) # Tokens Acc. (%) # Tokens
CoT | 42.9 +o.2 25.0 98.8 +0.8 92.5

CocoNUT (Ours) | 34.1 +1.5 8.2 99.8 +0.2

77.5 +£1.9 49.4
9.0 97.0 +0.3 14.2

CoT leads on accuracy

Logical Reasoning

Method GSMS8k ProntoQA ProsQA
etho
Acc. (%) # Tokens| Acc. (%) # Tokens Acc. (%) # Tokens
CoT 429 +o0.2 25.0 98.8 +0.8 92.5 77.5 +1.9 49.4
CocoNUT (Ours) 34.1 +1.5 8.2 99.8 +0.2 9.0 97.0 +0.3 14.2
CoT

Coconut matches & outperform CoT
19.5% accuracy improvement while using 71% fewer tokens

Method GSMS8k ProntoQA ProsQA
etho
Acc. (%) # Tokens Acc. (%) # Tokens Acc. (%) # Tokens
CoT 42.9 +o.2 25.0 98.8 +0.8 92.5 77.5 £1.9 49.4
CocoNuUT (Ours) 34.1 +1.5 8.2 99.8 +0.2 9.0 97.0 +0.3 14.2
S 68
¥ 2
W Fen 7o

Planning

Generalization

@
@

Contextual Reasving

>

E7

Token Efficiency

Now let's look at how Coconut compares to other
reasoning approaches beyond just CoT...

iCoT

Explicit CoT Stage 0:

Stage 1:

Stage 2:

Stage 3:

Stage 4:

Stage 5:

Implicit CoT Stage 6:

[3] From Explicit CoT to Implicit CoT: Learning to Internalize CoT Step by Step (2024) https://doi.ora/10.48550/arXiv.2405.14838

2

2

1

X

X

4

4

3

Output

0

0

https://doi.org/10.48550/arXiv.2405.14838

iCoT

CoT

Explicit CoT Stage0: 2 1 X 4 3 = 8 4 + 0 6 3

Implicit CoT Stage6: 2 1 X 4 3 =

Stage1: 2 1 x 4 3 = E 4 + 0 6 3 E =
Stage2: 2 1 x 4 3 = : + 0 6 3 : =
Stage3: 2 1 x 4 3 = . 0 6 3 ' =
Staged: 2 1 x 4 3 = . 6 3 . =
Stage5: 2 1 x 4 3 = 3 =

[3] From Explicit CoT to Implicit CoT: Learning to Internalize CoT Step by Step (2024) https://doi.ora/10.48550/arXiv.2405.14838

Output

0

0

Pause Token

Ignore
rargets % G0) (3 (&)
we: () ()OO
Loyr 034
tuts & @

(a) Standard inference and finetuning

(b) Pause-inference and finetuning

[4] Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh Nagarajan. Think before you speak: Training
language models with pause tokens. (2023) https:/doi.ora/10.48550/arXiv.2310.02226

https://doi.org/10.48550/arXiv.2405.14838
https://doi.org/10.48550/arXiv.2310.02226

(OF)
(e)]

GSM8k
Method 34
Acc. (%) # Tokens 3
iCoT 30.0* 2.2 g
Pause Token 16.4 +1.8 2.2 5 30
CocoNUT (Ours) 34.1 +1.5 8.2 < 28

N
(e)]

0 1
Thoughts per step

Figure 3 Accuracy on GSM8k with different
number of continuous thoughts.

“Chaining” continuous thoughts enhances reasoning

‘180" 0.22
“180” 0.20
“9” 0.13

James decides to run 3 sprints 3 times a week. He
runs 60 meters each sprint. How many total meters
does he run a week?

Figure 4 A case study where we decode the continuous
thought into language tokens.

Continuous thoughts are efficient representations of
reasoning

No-CoT

it’s like CoT but no CoT

trained on GSM8k

<problem>

alAnswer>

<problem> — <finalAnswer>

iCoT

Explicit CoT Stage 0: 2

Stage 1: 2
Stage 2: 2
Stage 3: 2
Stage 4: 2
Stage 5: 2

Implicit CoT Stage 6: 2

[3] From Explicit CoT to Implicit CoT: Learning to Internalize CoT Step by Step (2024) http:

1

1

Input

X

X

4

4

3

CoT .
+ 0 6 3
+ 0 6 3
+ 0 6 3

0 6 3
6 3
.

‘doi.org/10.48550/arXiv.2405.14838

Output

0

0

Pause Token

Ignore
Output
Targets
Layer 2 O

Layer 1

Inputs

(a) Standard inference and finetuning

04
034

(b) Pause-inference and finetuning

[4] Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh Nagarajan. Think before you speak: Training

language models with pause tokens. (2023) http:

‘doi.ora/10.48550/arXiv.2310.02226

https://doi.org/10.48550/arXiv.2405.14838
https://doi.org/10.48550/arXiv.2310.02226

ProsQA
Acc. (%) # Tokens
CoT 77.5 +1.9 49.4

No-CoT 76.7 +1.0 8.2
iCoT 98.2 +0.3 8.2

Method

Pause Token 75.9 +o0.7 8.2
CoconNuT (Ours) 97.0 +0.3 14.2
- w/o curriculum 76.1 +0.2 14.2

- w/o thought 95.5 +1.1 8.2
- pause as thought 96.6 +0.8 8.2

Latent reasoning outperforms language reasoning in
planning-intensive tasks

O . 01 ,) :,r"f' r»—.,\u‘u / e

(h=0) z \ (h=1)
O 0.33 Coconurt (k=1) (u) : " - N\ Coconurt (k=2)

(=2) " bot> [Thought] <eot> ' (h=0) <bot> [Thought] [Thought] <eot>

Every lempus - . : Every rorpus ...

it N # S
N\ y, ‘\
¥ |
1 J
o \)
= o\ /
7 N Da-
> — LE }
)
V)

016 ,.f'f(';; ﬁ’”":x-‘ el 3 \“;‘:ﬁ' a8
(h=1) N ‘

0.32 s (D) o012 08
(h=2) o Y -y =D

Multiple concepts have significant probability clear convergence

Latent reasoning outperforms language reasoning in
planning-intensive tasks

Interpretability Trade-off

Is there any other limitations “?

Training stability issue

Possible Extensions

Pretraining with continuous thoughts Hybrid approaches
Current approach relies on finetuning e Combining language and latent reasoning
Could continuous thoughts be part of pretraining? e "Generating the reasoning skeleton in language"
Potential for more generalizable reasoning e "Completing the reasoning process in latent space"

abilities

Future Research Directions

Scaling to
larger models

Better
latent
reasoning

More advanced
reasoning
capabilities

Concluding Thoughts

- Key Takeaways

- Coconut enables reasoning in continuous latent space

- Shows emergent BFS-like search behavior

- Improves efficiency (71% fewer tokens) while maintaining accuracy
- Critics

- Still requires language supervision during training

Thank you

Q&A

