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Audio sampling
Human hearing
20 Hz – 20 kHz

Sample rate
40 kHz

Eliminate aliasing
44.1 kHz
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Digital quantization

Quantization
16 bits

Bitrate
1411 kbps44.1 kHz x 16 bits x 2 channels

Uncompressed audio: 630 MB / hour
Tokenizing: 44100 tokens / s ?
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Digital quantization

Quantization
16 bits

Bitrate
2 – 8 kbps44.1 kHz x 16 bits x 2 channels

Compressed audio: ~ 2 MB / hour

Compression
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Demo

Original Opus – 8kbps MP3 – 8 kbps RVQGAN – 8 kbps
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What do we need?

1. Efficient compression

2. Tokenizing audio

3. Generating audio
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Model architecture



Autoencoder

Reconstruction 
loss||

Latent space
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Autoencoder

Reconstruction 
loss||
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Variational autoencoder

Distribution

Reconstruction 
loss||
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Vector quantized VAE

Quantizer

Reconstruction 
loss||

Figure based on: [38] Aaron Van Den Oord, et al. Neural discrete representation learning 12



Vector quantized VAE

Reconstruction 
loss||

Codebook

𝑧𝑒(𝑥)
quantize

lookup
𝑧𝑞(𝑥)

Figure based on: [9] Prafulla Dhariwal, et al. Jukebox: A generative model for music 13



Residual vector quantized VAE

Reconstruction 
loss||

Codebook

𝑧𝑒(𝑥)
quantize

lookup

residual quantize

lookup

…

𝑧𝑞(𝑥)
Figure based on: [9] Prafulla Dhariwal, et al. Jukebox: A generative model for music 14



Bitrate of RVQVAE

15Figure based on: [8] Alexandre Défossez, et al. High fidelity neural audio compression

…

~86 windows / s
90 bit / window

512 samples

Codebook size: 1024 -> 10 bits
Number of quantizers: 1 – 9 ~ 8 kbps



||
Reconstruction 

loss

Figure based on: [8] Alexandre Défossez, et al. High fidelity neural audio compression

Residual vector quantized VAE
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Problem with simple loss
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Residual vector quantized VAE

Reconstruction 
loss||

Codebook

Figure based on: [38] Aaron Van Den Oord, et al. Neural discrete representation learning 18



Residual vector quantized VAE

Reconstruction 
loss||

Codebook
Discriminator

Figure based on: [8] Alexandre Défossez, et al. High fidelity neural audio compression 19



Generative adversarial networks

Generator
REAL

or
FAKE

Feature maps
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Discriminator

Dataset

train on L1 distance



EnCodec

Reconstruction 
loss||

Codebook
Discriminator

Figure based on: [8] Alexandre Défossez, et al. High fidelity neural audio compression 21



Improved RVQGAN



1. Periodic activation function
Snake activation function: 𝑠𝑛𝑎𝑘𝑒 𝑥 = 𝑥 +

1

𝛼
sin2(𝛼𝑥)

Figure based on: [47] Liu Ziyin, et al. Neural networks fail to learn periodic functions and how to fix it 23



2. Improved residual vector quantization
Low codebook utilization

Inefficient encoding
Lower quality reconstructions

24Source: High-Fidelity Audio Compression with Improved RVQGAN



2. Improved residual vector quantization
K-means clustering to initialize codebook
Randomized restart for underutilization

Exponential moving average (EMA)

Factorized codes
L2-normalized codes
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2. Improved residual vector quantization

Direct lookup
1024d

8d / 32d

Encoder output Codebook vector

Normalize
𝑊𝑖𝑛 𝑊𝑜𝑢𝑡
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3. Quantizer dropout rate

Reconstruction 
loss||

Codebook
Discriminator

𝑛 ~ 1, 2,… ,𝑁𝑞𝑝 = 0.5
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4. Discriminator design

1. Multi-scale discriminator (MSD) -> waveform

2. Multi-period discriminator (MPD) -> waveform

3. Complex short-time Fourier transform (STFT) discriminator at 
multiple time-scales -> frequency

28



Multi-scale discriminator

Downsample

Downsample
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Multi-period waveform discriminator
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Complex STFT at multiple time-scales

Fourier transform

Real part: frequency
Imaginary part: phase
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5. Loss functions
AdversarialReconstruction

• Mel-reconstruction loss
• Multi-scale spectral losses

• Multi-scale discriminator
• Multi-period discriminator
• Multi-band multi-scale STFT 

discriminator
Codebook learning

• Codebook loss
• Commitment loss
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RVQGAN

Reconstruction 
loss||

Codebook
Discriminator
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Training



Training data

• Speech, music, and environmental sounds
• Balanced data sampling (full-band)
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Experiments



Ablation study

• Discriminators
• Mel reconstruction loss
• Latent dimension of codebook
• Quantization setup
• Balanced data sampling
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Objective metrics

38Source: High-Fidelity Audio Compression with Improved RVQGAN



Subjective metrics

MUSHRA = MUltiple Stimuli with Hidden Reference and Anchor

Speech Music Environmental s.

39Source: High-Fidelity Audio Compression with Improved RVQGAN



Opinion



Opinion
+ Impressive results, very clearly presented
+ Clean codebase, 1-line usage from command line
+ Focus on new applications (encoding and audio generation)

– Lacking speed test (is it real-time?)
– Streamability
– Hard to compare sampling rates
– EnCodec uses entropy coding -> low codebook utilization is OK

– Reviewers criticize novelty (OpenReview)
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Evaluation metrics
1. Mel Distance

2. STFT Distance

3. ViSQOL (Virtual Speech Quality Objective Listener)
-> deep learning model trained on human hearing data to predict 
Mean Opinion Score

4. SI-SDR (Scale-Invariant Signal-to-Distortion Ratio)
-> similar to signal-to-noise ratio, with modifications so that it is 
invariant to scale differences, indicates the quality of the phase 
reconstruction of the audio



Sample rate comparisons
44 kHz 24 kHz



Loss function

Reconstruction loss (multi-scale mel, multi-scale spectral): 15.0
Feature matching loss: 2.0
Adversarial loss: 1.0
Codebook loss: 1.0
Commitment losses: 0.25



EnCodec demo

Original EnCodec – 12 kbps RVQGAN – 8 kbps
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