High-Fidelity Audio Compression with Improved RVQGAN

Presented by: Nandor Kofarago

Audio sampling

Digital quantization

Uncompressed audio: 630 MB / hour Tokenizing: 44100 tokens / s ?

Digital quantization

Compressed audio: ~ 2 MB / hour

7

What do we need?

1. Efficient compression

- 2. Tokenizing audio
- 3. Generating audio

Model architecture

Variational autoencoder

Vector quantized VAE

Figure based on: [38] Aaron Van Den Oord, et al. Neural discrete representation learning

Vector quantized VAE

Residual vector quantized VAE

Figure based on: [9] Prafulla Dhariwal, et al. Jukebox: A generative model for music

Bitrate of RVQVAE

Residual vector quantized VAE

Problem with simple loss

Residual vector quantized VAE

Generative adversarial networks

EnCodec Discriminator Codebook Reconstruction loss

Improved RVQGAN

1. Periodic activation function

2. Improved residual vector quantization

Low codebook utilization

Inefficient encoding Lower quality reconstructions

2. Improved residual vector quantization

K-means clustering to initialize codebook Randomized restart for underutilization

X

Exponential moving average (EMA)

Factorized codes

L2-normalized codes

2. Improved residual vector quantization

3. Quantizer dropout rate

4. Discriminator design

- 1. Multi-scale discriminator (MSD) -> waveform
- 2. Multi-period discriminator (MPD) -> waveform
- 3. Complex short-time Fourier transform (STFT) discriminator at multiple time-scales -> frequency

Multi-scale discriminator

Multi-period waveform discriminator

Complex STFT at multiple time-scales

Real part: **frequency**

Imaginary part: **phase**

5. Loss functions

Reconstruction

- Mel-reconstruction loss
- Multi-scale spectral losses

Codebook learning

- Codebook loss
- Commitment loss

Adversarial

- Multi-scale discriminator
- Multi-period discriminator
- Multi-band multi-scale STFT discriminator

RVQGAN

Training

Training data

- Speech, music, and environmental sounds
- Balanced data sampling (full-band)

Ablation study

- Discriminators
- Mel reconstruction loss
- Latent dimension of codebook
- Quantization setup
- Balanced data sampling

Objective metrics

	Codec	Bitrate (kbps)	Bandwidth (kHz)	Mel distance \downarrow	STFT distance \downarrow	ViSQOL ↑	SI-SDR↑
		1.78	22.05	1.39	1.95	3.76	2.16
	Proposed	2.67	22.05	1.28	1.85	3.90	4.41
	rioposed	5.33	22.05	1.07	1.69	4.09	8.13
		8	22.05	0.93	1.60	4.18	10.75
		1.5	12	2.11	4.30	2.82	-0.02
		3	12	1.97	4.19	2.94	2.94
∞	EnCodec	6	12	1.83	4.10	3.05	5.99
		12	12	1.70	4.02	3.13	8.36
		24	12	1.61	3.97	3.16	9.59
G	Lyra	9.2	8	2.71	4.86	2.19	-14.52
		8	4	3.60	5.72	2.06	5.68
	Opus	14	16	1.23	2.14	4.02	8.02
		24	16	0.88	1.90	4.15	11.65

Source: High-Fidelity Audio Compression with Improved RVQGAN

Subjective metrics

MUSHRA = MUltiple Stimuli with Hidden Reference and Anchor

Source: High-Fidelity Audio Compression with Improved RVQGAN

Opinion

- + Impressive results, very clearly presented
- + Clean codebase, 1-line usage from command line
- + Focus on new applications (encoding and audio generation)
- Lacking speed test (is it real-time?)
- Streamability
- Hard to compare sampling rates
- EnCodec uses entropy coding -> low codebook utilization is OK
- Reviewers criticize novelty (OpenReview)

Discussion time

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

Evaluation metrics

- 1. Mel Distance
- 2. STFT Distance
- ViSQOL (Virtual Speech Quality Objective Listener)
 -> deep learning model trained on human hearing data to predict Mean Opinion Score
- 4. SI-SDR (Scale-Invariant Signal-to-Distortion Ratio)

-> similar to signal-to-noise ratio, with modifications so that it is invariant to scale differences, indicates the quality of the phase reconstruction of the audio

Sample rate comparisons

44 kHz

24 kHz

Loss function

 $\mathcal{L}_{VQ} = ||sg[\ell_2(z_{proj}(x))] - \ell_2(e_k)||_2^2 + \beta ||\ell_2(z_{proj}(x)) - sg[\ell_2(e_k)]||_2^2$

Reconstruction loss (multi-scale mel, multi-scale spectral): 15.0 Feature matching loss: 2.0 Adversarial loss: 1.0 Codebook loss: 1.0

Commitment losses: 0.25

EnCodec demo

