
Vision Transformers 

Needs Registers

Presenter: Niccolo Avogaro

18.03.2025



Background

17.03.2025 2



Self-Supervised Learning in Computer Vision
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• Using the vision sense is a natural and 

powerful way to gain perception of our 

world.

• Using the vision sense is a natural and 

powerful way to gain perception of our 

world.

• Traditional computer vision pipelines 

require extremely expensive labeling 

processes.

• Learning via image content without any 

labels has proven to be extremely hard.
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• Self-Supervised Learning aims at 

creating a strong representation via 

training on a pre-text task.
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Self-Supervised Pipeline
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• Self-Supervised Learning aims at 

creating a strong representation via 

training on a pre-text task.

• We want to enforce two different 

looking images of the same object to be 

mapped closely in the feature space

• The model is usually trained 

maximizing the agreement of two 

augmentations



Some of the Greatest
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CLIP (Again)

Radford et al, Learning Transferable Visual 

Models From Natural Language Supervision, 
2021

MAE 

He et al, Masked Autoencoders Are 

Scalable Vision Learners, 2021

DINO 

Caron et al, Emerging Properties in 

Self-Supervised Vision Transformers, 
2021



Emerging Properties in Self-Supervised Vision Transformers
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Vision Transformers Need Registers
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Problem
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• The emergence of clean 

attention maps in 

inference is a behavior not 

seen in modern SSL 

methods.



Distribution of artifacts
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• Looking at the distribution of the 

norms of the attention values, 

DINOv2 has a few outlier patches, 

whereas DINO does not present 

these artifacts.
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Distribution of artifacts
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• Looking at the distribution of the 

norms of the attention values, 

DINOv2 has a few outlier patches, 

whereas DINO does not present 

these artifacts.

• Seems like a bimodal distribution 

of values.

• The outlier patches are very 

dissimilar in the feature space 

from their neighbors



Distribution of artifacts - More in detail
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Other interesting observations
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• The behavior is per-se not bad, as the 

models having artifacts still carry the most of 

performance

• On the other hand, the model discards local 

patch information 

• Linear probing of the representation (CLS, 

normal and outliers) shows that outliers 

contain global information



Hypothesys
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Large, sufficiently trained models learn to recognize redundant 
tokens, and to use them as places to store, process and retrieve 
global information. 



Solution
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Registers
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Adding new tokens not used in downstream tasks empowers the model to 

store and process additional information while reducing artifacts.



Results
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Results
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• The distribution of norms 

becomes unimodal, with way 

less outliers.

• The performance is similar or 

slightly better in downstream 

tasks



Results
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• The performance improves 

dramatically for unsupervised 

object discovery tasks
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Emergent Property (?)
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Conlusions and Limitations

• Darcet et al. finds that the attention maps of modern transformer-based 

models is corrupted.

• They introduce a registers to clean these maps, resulting in clearer 

visualizations. 

• Great explainability work.

• While attention maps improve, the downstream performance is left 

unchanged, with unsupervised segmentation models being far from SOTA.

• Self-contained.
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Future Work

• Emergent object-centric 

behavior is interesting. 

• Solving object centric self-

supervised representation 

learning would mean solve the 

tokenization problem in CV  

Locatello et al, Object-Centric Learning with Slot Attention, 2020
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Future Work

• Adding registers to allow for better 

computation of results is very interesting 

• Input-level computation is a field sometimes 

overlooked

Burtsev et al, Memory Transformer, 2020
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