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Self-Supervised Learning in Computer Vision

«  Using the vision sense is a natural and
powerful way to gain perception of our
world.

«  Traditional computer vision pipelines
require extremely expensive labeling
processes.

«  Learning via image content without any

labels has proven to be extremely hard.

mzuriCh Source: https://x.com/ylecun/status/1766498677751787723

@ Yann LeCun & «

)y @ylecun

* Language is low bandwidth: less than 12 bytes/second. A person can
read 270 words/minutes, or 4.5 words/second, which is 12 bytes/s
(assuming 2 bytes per token and 0.75 words per token). A modern LLM is
typically trained with 1x10"13 two-byte tokens, which is 2x10"13 bytes.

This would take about 100,000 years for a person to read (at 12 hours a
day).

*Vision is much higher bandwidth: about 20MB/s. Each of the two
optical nerves has 1 million nerve fibers, each carrying about 10 bytes
per second. A 4 year-old child has been awake a total 16,000 hours,
which translates into 1x10"15 bytes.

In other words:

- The data bandwidth of visual perception is roughly 16 million times
higher than the data bandwidth of written (or spoken) language.

- In amere 4 years, a child has seen 50 times more data than the biggest
LLMs trained on all the text publicly available on the internet.
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Classic Computer Vision Pipeline
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Self-Supervised Pipeline

dataset (no labels)

pre-training
model

«  Self-Supervised Learning aims at
creating a strong representation via

pretext
training on a pre-text task. task
knowledge
transfer
V
target
= - task
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Self-Supervised Pipeline

«  Self-Supervised Learning aims at
creating a strong representation via
training on a pre-text task.

«  We want to enforce two different
looking images of the same object to be
mapped closely in the feature space

ETHzurich

(f) Rotate {90°, 180°, 270°

}

(g) Cutout

(h) Gaussian noise

(i) Gaussian blur

(j) Sobel filtering
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Self-Supervised Pipeline

Self-Supervised Learning aims at
creating a strong representation via
training on a pre-text task.

We want to enforce two different

looking images of the same object to be

mapped closely in the feature space

The model is usually trained
maximizing the agreement of two
augmentations

ETH:z(rich
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Some of the Greatest
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He et al, Masked Autoencoders Are
Scalable Vision Learners, 2021
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Emerging Properties in Self-Supervised Vision Transformers

Figure 1: Self-attention from a Vision Transformer with 8 x 8 patches trained with no supervision. We look at the self-attention of
the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model
automatically learns class-specific features leading to unsupervised object segmentations.
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Vision Transformers Need Registers
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Problem

Input DeiT-111-B DeiT-III-L.  OpenCLIP-B  OpenCLIP-L DINO-B DINOv2-g

« The emergence of clean
attention maps in
Inference is a behavior not
seen in modern SSL
methods.

ETH:z(rich
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Distribution of artifacts

« Looking at the distribution of the
input image DINO norms DINOv2 norms norms of the attention V&'UES,

. ;zO DINOvV2 has a few outlier patches,
Q 60 whereas DINO does not present
| 4 these artifacts.
, - I i20
0
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Distribution of artifacts
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« Looking at the distribution of the
norms of the attention values,
DINOvVZ2 has a few outlier patches,
whereas DINO does not present
these artifacts.

« Seems like a bimodal distribution
of values.

17.03.2025
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Distribution of artifacts

« Looking at the distribution of the

20 norms of the attention values,
. ;‘ftrlgi't patches DINOV2 has a few outlier patches,
> patches
G 10 whereas DINO does not present
3 gy these artifacts.
0 = — « Seems like a bimodal distribution
0.0 0.5 1.0

of values.

(a) Cosine similarity to neighbors. _
« The outlier patches are very

dissimilar in the feature space
from their neighbors
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Distribution of artifacts - More In detall
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(a) Norms along layers. (b) Norms along iterations. (c) Norms across model size.

Figure 4: Illustration of several properties of outlier tokens in the 40-layer DINOv2 ViT-g model.
(a): Distribution of output token norms along layers. (b): Distribution of norms along training
iterations. (c): Distribution of norms for different model sizes. The outliers appear around the
middle of the model during training; they appear with models larger than and including ViT-Large.
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Other interesting observations

The behavior is per-se not bad, as the
models having artifacts still carry the most of

performance position prediction reconstruction

On the other hand, the model discards local top-1 acc  avg. distance | L2 error |

patch information normal 41.7 0.79 18.38
outlier 22.8 5.09 25.23

Linear probing of the representation (CLS,
normal and outliers) shows that outliers
contain global information

IN1k P205 Airc. CF10 CF100 CUB Cal101 Cars DTD Flow. Food Pets SUN VOC

[CLS] 86.0 664 87.3 994 945 913 969 915 852 99.7 94.7 96.9 78.6 89.1
normal 65.8 53.1 17.1 97.1 813 18.6 73.2 10.8 63.1 595 74.2 47.8 37.7 70.8
outlier = 69.0 55.1 79.1 993 93.7 849 97.6 852 849 99.6 93.5 94.1 78.5 89.7
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Hypothesys
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Large, sufficiently trained models learn to recognize redundant
tokens, and to use them as places to store, process and retrieve
global information.
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Solution
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Registers
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Adding new tokens not used in downstream tasks empowers the model to
store and process additional information while reducing artifacts.
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Results

Without registers With registers
Input DeiT-111 penCLIP DINOv?2 DeiT-111

OpenCLIP DINOv2
- ’
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Results

200 4
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* The distribution of norms 2 100 s0] B M
- - - -
becomes un|m0da|’ W|th Way DINOV2  DINOV2+reg OpenCLIP OpenCLIP+reg DeiT-Il  DeiT-ll+reg
less outliers.
* The performance is similar or ImageNet ADE20k NYUd
. . Top-1 mloU  rmse |
slightly better in downstream DeiTII 847 389 0511
t k DeiT-1ll+reg 84.7 39.1 0.512
aSKS OpenCLIP 78.2 26.6 0.702 ImageNet
OpenCLIP+reg 78.1 26.7 0.661 Top-1
DINOv2 84.3 46.6 0.378 OpenCLIP 59.9
DINOvV2+reg 84.8 479 0.366 OpenCLIP+reg 60.1
(a) Linear evaluation with frozen features. (b) Zero-shot classification.

ETH:zirich 3/17/2025 22



Results

* The performance improves
dramatically for unsupervised
object discovery tasks

ETH:z(rich

VOC 2007 VOC2012 COCO 20k
DeiT-III 11.7 13.1 10.7
DeiT-1II+reg 27.1 32.7 25.1
OpenCLIP 38.8 44.3 31.0
OpenCLIP+reg 37.1 42.0 27.9
DINOv2 35.3 40.2 26.9
DINOv2+reg 554 60.0 42.0
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Emergent Property (?)

[CLS] [regia]

Figure 9: Comparison of the attention maps of the [CLS] and register tokens. Register tokens
sometimes attend to different parts of the feature map, similarly to slot attention (Locatello et al.,
2020). This behaviour was never required from the model, and emerged naturally from training.

ETH:zirich 17.03.2025
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Conlusions and Limitations

« Darcet et al. finds that the attention maps of modern transformer-based
models is corrupted.

* They introduce a registers to clean these maps, resulting in clearer
visualizations.

« Great explainability work.

* While attention maps improve, the downstream performance is left
unchanged, with unsupervised segmentation models being far from SOTA.

e Self-contained.
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Future Work

« Emergent object-centric v T
behavior is interesting. TN | -B!O.
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Future Work

Adding registers to allow for better
computation of results is very interesting

Input-level computation is a field sometimes
overlooked

ETH:z(rich

Burtsev et al, Memory Transformer, 2020

mem token vectors

[sequence]
update

[sequence]
attention

mem tokens sequence tokens
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