h

uric

ETH-

'©
e
-
D

Z
(7p)
D
O

O

Erdos




Research Objective

ETH:zrich



Objective

Solve combinatorial problems with an unsupervised learning framework

min f(S;G) sSubjectto S e Q

SQV“I

Cost function SCV G=(V,E) Feasible Set

SR

ETH:zirich Maximum Cllque Trave“ng Salesman Minimum Cut




Example: Maximum Clique

Objective:

find the largest clique S (fully connected subgraph) within a given graph S

min —|S| subjectto S e Q.
sy N J clique

ETH:urich Maximum Clique



Why learning?

Many key combinatorial problems are NP-hard.

Learning Based

® | earns heuristics automatically
from data

* Generalizes across problem
sizes and distributions

e Fast inference after training

ETH:zirich

Classic algorithms — heuristics

e Hardcoded heuristics — no
adaptation to unseen instance
distributions

* No learning from previous problem
iInstances

* Require human-engineered

problem-specific knowledge

\_




Learning Paradigms

Supervised (Pointer Networks, Neurocore)

~

-

e Stable training
* Good performance

~

_

(
e High computational cost for
labeling hard instances
* | imited generalization
-

Reinforcement Learning (S2V-DQN, REINFORCE)

-

u

* Flexible

e Straightforward for simple instances

e Combinatorial decision making
problems

~

Y

ETH:zirich

r
® Training stability
e Convergence issues
® Resource intensive
\




Learning Paradigms

Unsupervised

~

-

e Stable training

e Computationally efficient for
labeling

¢ Better generalization

~

_J

Solution Integrality

I want this not this

~

\_

® Hard to obtain an integral solution

Solution Feasibility

feasible (clique)

<
X
not feasible

ETH:zirich




Background

ETH:zrich



Probabilistic Method

A non-constructive technique that proves the existence of a mathematical object by showing that the
probability of randomly selecting such an object is greater than zero.

4 )

Approach to prove the existence of a set of nodes S with a desired property:

1. Define a probability distribution over the space of all possible set S on
the graph

2. Show that P(S has property) > 0

\_ /

ETH:zirich



Probabilistic Method - Max Cut

Objective: bipartition graph such that cut is maximized

max cut(S,V—-.39)
Scv

ETH:urich 10



Probabilistic Method - Max Cut

E
Prove Max-Cut(G) > |—2|

1. Define a probability distribution: sample every node (into S )
1
with probability 1/2.  P(u € S) = E

E[cut(S,V-S8)] = Z P({u,v}is a cut edge) :

{uyv}eE

- 2 PlueS,vgS|+PlveS,u¢gs]
{uy}eE

11
= 2 7+7
{uyv}€eE
_IE]
2

E
2. We can see that P(cut(S,V—-29) > %) >0

ETH:urich 1



Method of Conditional Expectation

Recap
| E]

e Each vertex is placed randomly in S or V —§. E[cut(S, V- 8)] = -
|E|

e Deterministically choose where to place each vertex to guarantee a cut of size > -
Derandomization via Conditional Expectation
* At each step, fix the value of one random choice.

e Choose it so that the conditional expectation of the total cut size does not decrease.
e After all choices are fixed, the total cut size is still = the original expected value.

ETH:zirich

12



Method of Conditional Expectation

O x
. Zlftzl
Algorithm O 2 =0
Fort=1,....,ndo
If E[cut |21,..., 21, X = 1] > E[cut |21, ..., 24—1] vy O v
Ty < 1
Else x;, <+ 0
Return {z; =1 | v, € V} V2 O U4

ETH:urich 13



Method of Conditional Expectation

O X
. Ty — 1
Algorithm O =0
Fort=1,...,ndo Elcut | z1 = 1] > E[cut]
If Elcut|zy1,...,2¢-1, X¢ = 1] > El[cut |21, ..., 2_1] V1 Qv3
r: 1
Else x;, <+ 0
Return {z; =1 | v; € V} v2 O U4

ETH:urich 1



Method of Conditional Expectation

O X
. Zlftzl
Algorithm O =0
Fort=1,....,ndo
If E[CUt’CBl,...,ZCt_l,XtZI] >E[CUt‘ZC1,...,xt—1] (0] OUS
r: 1
Else x;, <+ 0
Return {z; =1 | v, € V} U2 Q U4

ETH:urich 15



Method of Conditional Expectation

O X
. Tt = 1
Algorithm O z=0

For t = 1,...,nd0 Elcut|x; = 1,x, = 1] > E[cut|x; = 1]

If E[cut |21,..., 21, X = 1] > E[cut |21, ..., 24—1] 1 O vs
Ty < 1
Else x;, <+ 0

Return {z; =1 | v, € V} U2 O U4

ETH:urich 16



Method of Conditional Expectation

O X
@ -
Algorithm O #=0
Fort=1,...,ndo
If E[cut |21,..., 21, X = 1] > E[cut |21, ..., 24—1] 1 O vs
Ty < 1
Else x;, <+ 0
Return {z; =1 | v, € V} U2 ‘ U4

ETH:urich 17



Method of Conditional Expectation

Algorithm

= =1x,=1] <
Fort=1,....n do Elcut|x, = 1x, = Lx; = 1] <

Elcut|x; = 1,x, = 2]
If Elcut |xq,...,z¢_1,X; = 1] > Elcut | 1,

.. .,.Tt_l] fUl O U3
r: 1

Else x;, <+ 0

Return {z; =1 | v, € V} V2 &

ETH:zirich

18



Method of Conditional Expectation

Algorithm

Fort=1,....,ndo
If Elcut|zy1,...,2¢-1, X¢ = 1] > El[cut |21, ..., 2_1]

r: 1
Else x;, <+ 0

Return {z; =1 | v, € V'}

ETH:zirich

19



Method of Conditional Expectation

Algorithm O =0

Fort=1,...,ndo Efcut|x; = Lx; = 1x3 =0 =1] <

Elcut|x; = 1,x, = 2,x3 = 0]

If E[cut |21,..., 21, X = 1] > E[cut |21, ..., 24—1] 1 O vs

r: 1
Else x;, <+ 0

Return {z; =1 | v, € V} V2 ‘ V4

ETH:urich 20



Method of Conditional Expectation

Algorithm

Fort=1,....,ndo
If Elcut|zy1,...,2¢-1, X¢ = 1] > El[cut |21, ..., 2_1]

r: 1
Else x;, <+ 0

Return {z; =1 | v, € V'}

ETH:zirich

21



Graph Neural Networks (GNN)

Input: G = (V, E)

Goal: learn node or graph representations

GNN Core Idea

e Each node updates its feature by combining
information from its neighbors

* Repeat over multiple layers
Limitation
e All neighbors treated equally

* Sometimes cannot distinguish different graphs
ETH:urich 22



Message Passing

ETH:zirich

Key Idea

* Each node updates its feature by receiving
messages from neighbors

* This is repeated over multiple layers to capture
larger neighborhoods

Message passing steps

1. Message: Each node collects features from its
neighbors.

2. Aggregation: Combines the incoming messages
(e.g., mean, sum)

3. Update: Applies a transformation (like a neural
network) to update its own feature

23



Graph Attention Networks (GAT)

/

avul
Input: G = (V, E) @ Qs
Goal: learn node or graph representations Qyug

GAT Core Idea

® | earn to weigh neighbors differently

* Important neighbors contribute more
Key Features

* Focuses on relevant parts of the graph

* Adapts to node importance dynamically

ETH:zirich



Erdos goes Neural

ETH:zrich



Erdos goes Neural

min f(S5;G) subjectto Se€Q

To solve the problem scv

1. Probability function learned by a GNN

2. P(S has property) > 0 is optimized trough the derived loss function

ETH:zirich

26



Pipeline

Construct a GNN that outputs a probability p; on each node v;.

Training Decoding
— —
Minimizing the Recover the discrete

probabilistic penalty loss solution by sampling or

ensures the learned by the method of
distribution contains a conditional expectation.
small cost and feasible |

set with sufficient

probability.

ETH:zirich



Erdos goes neural: Loss function

ZD,G) = E[f(S0)]

Loss distribution of
the GNN over the
graph’s nodes

+ P(S & Q)p

Probability of

constraint violation

Penalty coefficient

:

with positive probability.
\” P P

f(8*,G) < Z(D; G),

S* e Q,

heorem (informal): let f be non-negative. There exists a set §* ~ D that satisfies:\

ETH:zirich

28



Experiments

ETH:zrich



Experimental Setup

Problem: Maximum clique

Baseline: neural networks (Toenshoff 2019), classic heuristics, and solvers (CBC, Gurobi 9.0)

Datasets:
e Real world: TWITTER, IMDB, COLLAB
* Hard instances for maximum clique

Architecture

e GIN and GAT layers

® Residual connection and batch norm

* One hot encoding of random node as input
* Train with Adam and early stopping

ETH:zirich

30



Results

Test set approximation ratios for all methods on real-world datasets

IMDB

COLLAB

TWITTER

( Erdés’ GNN (fast)

Erdos’ GNN (accurate)

1.000 (0.08 s/g)
1.000 (0.10 s/g)

0.982 + 0.063 (0.10 s/g)
0.990 4+ 0.042 (0.15 s/g)

0.924 + 0.133 (0.17 s/g)
0.942 + 0.111 (0.42 s/g)

RUN-CSP (fast)
RUN-CSP (accurate)
Bomze GNN

MS GNN

0.823 + 0.191 (0.11 s/g
0.957 £ 0.089 (0.12 s/g
0.996 + 0.016 (0.02 s/g

0.912 + 0.188 (0.14 s/g)
0.987 + 0.074 (0.19 s/g)

0.909 + 0.145 (0.21 s/g)
0.987 + 0.063 (0.39 s/g)

NX MIS approx.
Greedy MIS Heur.
Toenshoff-Greedy

0.950 £+ 0.071 (0.01 s/g
0.878 + 0.174 (le-3 s/g

)
( )
( )
0.995 + 0.068 (0.03 s/g)
( )
( )
0.987 + 0.050 (1e-3 s/g)

0.946 + 0.078 (1.22 s/g)
0.771 £ 0.291 (0.04 s/g)
0.969 + 0.087 (0.06 s/g)

0.849 + 0.097 (0.44 s/g)
0.500 + 0.258 (0.05 s/g)
0.917 + 0.126 (0.08 s/g)

CBC (1s)

CBC (5s)
Gurobi 9.0 (0.1s)
Gurobi 9.0 (0.5s)
Gurobi 9.0 (1s)
Gurobi 9.0 (5s)

0.985 + 0.121 (0.03 s/g)
1.000 (0.03 s/g)
1.000 (1e-3 s/g)
1.000 (le-3 s/g)
1.000 (1e-3 s/g)
1.000 (le-3 s/g)

0.658 + 0.474 (0.49 s/g)
0.841 + 0.365 (1.11 s/g)
0.982 + 0.101 (0.05 s/g)
0.997 + 0.035 (0.06 s/g)
0.999 + 0.015 (0.06 s/g)
1.000 (0.06 s/g)

0.107 + 0.309 (1.48 s/g)
0.198 =+ 0.399 (4.77 s/g)
0.803 + 0.258 (0.21 s/g)
0.996 + 0.019 (0.34 s/g)
1.000 (0.34 s/g)
1.000 (0.35 s/g)

ETH:zirich

31



Results

Approximation ratios for best methods on hard instances

Training sct

Test set

Large Instances

C]rd(')'s' GNN (fast) 0.899 + 0.064 (0.27 s/g) 0.788 + 0.065 (0.23 s/g) 0.708 + 0.027 (1.58 s/gj
Erdés” GNN (accurate) 0.915 -+ 0.060 (0.53 s/g) 0.799 + 0.067 (0.46 s/g) 0.735 + 0.021 (6.68 s/g
RUN-CSP (fast) 0.833 + 0.079 (0.27 s/g) 0.738 + 0.067 (0.23 s/g) 0.771 + 0.032 (1.84 s/g)
RUN-CSP (accurate) 0.892 4+ 0.064 (0.51 s/g) 0.789 =+ 0.053 (0.47 s/g) 0.804 = 0.024 (5.46 s/g)
Toenshoft-Greedy 0.924 + 0.060 (0.02 s/g) 0.816 = 0.064 (0.02 s/g) 0.829 + 0.027 (0.35 s/g)
Gurobi 9.0 (0.1s) 0.889 + 0.121 (0.18 s/g) 0.795 + 0.118 (0.16 s/g) 0.697 + 0.033 (1.17 s/g)
Gurobi 9.0 (0.5s) 0.962 + 0.076 (0.34 s/g) 0.855 + 0.083 (0.31 s/g) 0.697 + 0.033 (1.54 s/g)
Gurobi 9.0 (1.0s) 0.980 + 0.054 (0.45 s/g) 0.872 + 0.070 (0.40 s/g)  0.705 + 0.039 (2.05 s/g)
Gurobi 9.0 (5.0s) 0.998 + 0.010 (0.76 s/g) 0.884 + 0.062 (0.68 s/g) 0.790 4+ 0.285 (6.01 s/g)
Gurobi 9.0 (20.0s) 0.999 + 0.003 (1.04 s/g) 0.885 + 0.063 (0.96 s/g) 0.807 £+ 0.134 (21.24 s/g)

ETH:zirich

32



Conclusions

ETH:zirich

Main Features

* Merges probabilistic method with deep
learning

* Principled way to ensure feasibility of
solutions for various CO problems

e Competitive performance

33



Conclusions

ETH:zirich

Limitations

® Theoretical guarantees — No worst-case
approximation bounds

* | acks strong generalization

e MIP Solvers like Gurobi are still SoA and greedy
algorithms can be extremely efficient in practice

e Can be hard to obtain analytically a differentiable

expression for certain constraints (e.g., imposing
path or tree structure on solutions).

34



Follow-up

Erdos goes neural laid the groundwork for unsupervised neural approaches
to combinatorial optimization

* Meta-EGN (ICLR 2023) Learns to generalize across tasks by optimizing initial
weights — great generalization but higher training cost

* Objective Relaxation (NeurlPS 2022) Relax objectives to ensure quality of relaxed
solution — Theoretically grounded

* DIFUSCO (NeurlPS 2023) leverages graph-based diffusion models to iteratively
refine solutions

ETH:urich 35



Thank You

ETH:zrich



Erdos Goes Neural: architecture

ETH:zirich

e 6 GIN layers followed by a multi-head GAT layer

e Residual connection and batch normalization at
every layer

* Graph size normalization, for optimization
stability

* The output of GNN to a 2 layers MLP, giving as
output one value per node

* Min-Max normalization to rescale the output
values in the interval [0,1]

37



Case study: Maximum clique

G=(V,E) |V|=N, |E|=M

Objective min y—|§| subjectto§ € Qgjique

Probabilistic penalty < ;,,.(D,G) =y + E[|S|]1+ pE[|V - S]]
L p
©s8 =r=B+1D) Y, wpp+5 X,

With probability at least t, set $* ~ D satisfies

<D, G)
T <|§*| S*e chique

Y

ETH:zirich

38



Toenshoff 2019

GNN thresholding repair heuristic
e —_— 7»

ETH:urich 39



Maximum Clique: Step 1

G=(V,E) |V|=N, |E|=M

1. Use a Bernoulli random variable for each node

2. Write the cost function for the problem

3. Build a GNN
1. Take in input some node features

2. Output Nx1 vector of probabilities

ETH:zirich

-

min y

SCV

1, with probability p,
0, with probability 1 — p,

—|S| subjectto Sis a clique

40



Maximum Clique: Step 2

Derivation of the loss function

[(pys - Pp G) = ELf(S; G)] + P(S € )fp

l

Letique(P1s -+ Py G) = v + E[| S]] + PE[|V = S]]

clique

=y—(B+1) ) w,-jp,-p,-+§2p,-pj

ETH:zirich

41



Maximum Clique: Step 3

1. Train the network

2. Retrieve the set S from the probabilities of the network using the method of
conditional expectation:
Sort the nodes according to their probabilities. Starting from the high
probability nodes, for each node v; do:
1. Evaluate the loss for p, = 1 and for p, = 0
2. Set p; to either 1 or 0 depending on what achieved the better loss
3. Move on to the next node and repeat from step 1

ETH:zirich

42



Graph Isomorphism Networks (GIN)

Input: G = (V, E)

Goal: learn node or graph representations

ETH:zirich

()
O—{(
(%)

GIN Core Idea

e Stronger aggregation: sum all neighbor features

* Apply a neural network (MLP) after aggregation

Key Features

* Best at capturing subtle graph structures

® MLP can learn complex local patterns

MLP

43



