

 Erdős Goes Neural

Research Objective

2

Objective

3

min
S⊆V

f(S; G) subject to S ∈ Ω

G = (V, E)

Solve combinatorial problems with an unsupervised learning framework

S ⊆ VCost function Feasible Set

Maximum Clique Traveling Salesman Minimum Cut

Example: Maximum Clique

4Maximum Clique

min
S⊆V

− |S | subject to S ∈ Ωclique

Objective:

find the largest clique (fully connected subgraph) within a given graph S

Why learning?

5

• Hardcoded heuristics – no
adaptation to unseen instance
distributions

• No learning from previous problem
instances

• Require human-engineered
problem-specific knowledge

• Learns heuristics automatically
from data

• Generalizes across problem
sizes and distributions

• Fast inference after training

Classic algorithms — heuristicsLearning Based

Many key combinatorial problems are NP-hard.

Learning Paradigms

6

Supervised (Pointer Networks, Neurocore)

• Stable training
• Good performance

• High computational cost for
labeling hard instances

• Limited generalization

Reinforcement Learning (S2V-DQN, REINFORCE)

• Flexible
• Straightforward for simple instances
• Combinatorial decision making

problems

• Training stability
• Convergence issues
• Resource intensive

Learning Paradigms

7

Unsupervised

• Stable training
• Computationally efficient for

labeling
• Better generalization

• Hard to obtain an integral solution

Background

8

Probabilistic Method

9

A non-constructive technique that proves the existence of a mathematical object by showing that the
probability of randomly selecting such an object is greater than zero.

1. Define a probability distribution over the space of all possible set on
the graph

2. Show that

S

P(S has property) > 0

Approach to prove the existence of a set of nodes with a desired property:S

Probabilistic Method - Max Cut

10

Objective: bipartition graph such that cut is maximized

max
S⊂V

cut(S, V − S)

S
V − S

Probabilistic Method - Max Cut

11

1. Define a probability distribution: sample every node (into)

with probability .

S

1/2 P(u ∈ S) =
1
2

Prove Max-Cut() G ≥
|E |
2

𝔼[cut(S, V − S)] = ∑
{u,v}∈E

P({u, v}is a cut edge)

= ∑
{u,v}∈E

P[u ∈ S, v ∉ S] + P[v ∈ S, u ∉ S]

=
|E |
2

S V − S

2. We can see that P(cut(S, V − S) ≥
|E |
2

) > 0

= ∑
{u,v}∈E

1
4

+
1
4

Method of Conditional Expectation

12

Derandomization via Conditional Expectation

• At each step, fix the value of one random choice.
• Choose it so that the conditional expectation of the total cut size does not decrease.
• After all choices are fixed, the total cut size is still ≥ the original expected value.

Recap
• Each vertex is placed randomly in or .

• Deterministically choose where to place each vertex to guarantee a cut of size

S V − S

≥
|E |
2

𝔼[cut(S, V − S)] =
|E |
2

Method of Conditional Expectation

13

Algorithm

Method of Conditional Expectation

14

Algorithm

Method of Conditional Expectation

15

Algorithm

Method of Conditional Expectation

16

Algorithm

𝔼[cut |x1 = 1,x2 = 1] > 𝔼[cut |x1 = 1]

Method of Conditional Expectation

17

Algorithm

Method of Conditional Expectation

18

Algorithm

𝔼[cut |x1 = 1,x2 = 1,x3 = 1] ≤
𝔼[cut |x1 = 1,x2 = 2]

Method of Conditional Expectation

19

Algorithm

Method of Conditional Expectation

20

Algorithm

𝔼[cut |x1 = 1,x2 = 1,x3 = 0,x4 = 1] ≤
𝔼[cut |x1 = 1,x2 = 2,x3 = 0]

Method of Conditional Expectation

21

Algorithm

Graph Neural Networks (GNN)

22

Input:

Goal: learn node or graph representations

G = (V, E)

GNN Core Idea

• Each node updates its feature by combining
information from its neighbors

• Repeat over multiple layers

Limitation

• All neighbors treated equally

• Sometimes cannot distinguish different graphs

Message Passing

23

Key Idea

• Each node updates its feature by receiving
messages from neighbors

• This is repeated over multiple layers to capture
larger neighborhoods

Message passing steps

1. Message: Each node collects features from its
neighbors.

2. Aggregation: Combines the incoming messages
(e.g., mean, sum)

3. Update: Applies a transformation (like a neural
network) to update its own feature

Graph Attention Networks (GAT)

24

Input:

Goal: learn node or graph representations

G = (V, E)

GAT Core Idea

• Learn to weigh neighbors differently

• Important neighbors contribute more

Key Features

• Focuses on relevant parts of the graph

• Adapts to node importance dynamically

Erdős goes Neural

25

Erdos goes Neural

26

min
S⊆V

f (S; G) subject to S ∈ Ω

1. Probability function learned by a GNN

2. is optimized trough the derived loss functionP(S has property) > 0

To solve the problem

Pipeline

27

Erdos goes neural: Loss function

28

ℒ(D, G) = E[f(S; G)] + P(S ∉ Ω)β

Loss distribution of
the GNN over the
graph’s nodes Penalty coefficientProbability of

constraint violation

Theorem (informal): let f be non-negative. There exists a set that satisfies:

with positive probability.

S* ∼ D

f (S*; G) < ℒ(D; G), S* ∈ Ω,

Experiments

29

30

Experimental Setup

Problem: Maximum clique

Baseline: neural networks (Toenshoff 2019), classic heuristics, and solvers (CBC, Gurobi 9.0)

Datasets:
• Real world: TWITTER, IMDB, COLLAB
• Hard instances for maximum clique

Architecture
• GIN and GAT layers
• Residual connection and batch norm
• One hot encoding of random node as input
• Train with Adam and early stopping

31

Results
Test set approximation ratios for all methods on real-world datasets

32

Results
Approximation ratios for best methods on hard instances

33

Conclusions

Main Features

• Merges probabilistic method with deep
learning

• Principled way to ensure feasibility of
solutions for various CO problems

• Competitive performance

34

Conclusions

Limitations

• Theoretical guarantees — No worst-case
approximation bounds

• Lacks strong generalization

• MIP Solvers like Gurobi are still SoA and greedy
algorithms can be extremely efficient in practice

• Can be hard to obtain analytically a differentiable
expression for certain constraints (e.g., imposing
path or tree structure on solutions).

35

Follow-up

Erdos goes neural laid the groundwork for unsupervised neural approaches
to combinatorial optimization

• Meta-EGN (ICLR 2023) Learns to generalize across tasks by optimizing initial
weights — great generalization but higher training cost

• Objective Relaxation (NeurIPS 2022) Relax objectives to ensure quality of relaxed
solution — Theoretically grounded

• DIFUSCO (NeurIPS 2023) leverages graph-based diffusion models to iteratively
refine solutions

Thank You

36

37

Erdos Goes Neural: architecture

• 6 GIN layers followed by a multi-head GAT layer

• Residual connection and batch normalization at
every layer

• Graph size normalization, for optimization
stability

• The output of GNN to a 2 layers MLP, giving as
output one value per node

• Min-Max normalization to rescale the output
values in the interval [0,1]

Case study: Maximum clique

38

ℒclique(D, G) = γ + E[|S |] + βE[|V − S |]

= γ − (β + 1) ∑
(vi,vj)∈E

wij pi pj +
β
2 ∑

vi≠vj

pi pj

G = (V, E) |V | = N, |E | = M

min
S⊆V

γ − |S | subject to S ∈ ΩcliqueObjective

Probabilistic penalty
Loss

With probability at least t, set satisfies S* ∼ D

γ −
ℒ(D, G)

1 − t
≤ |S* | S* ∈ Ωclique

39

Toenshoff 2019

40

Maximum Clique: Step 1

1. Use a Bernoulli random variable for each node

2. Write the cost function for the problem

3. Build a GNN
1. Take in input some node features
2. Output Nx1 vector of probabilities

xi = {1, with probability pi

0, with probability 1 − pi

min
S⊆V

γ − |S | subject to S is a clique

G = (V, E) |V | = N, |E | = M

Maximum Clique: Step 2

41

Derivation of the loss function

l(p1, …, pn, G) = E[f (S; G)] + P(S ∉ Ω)β

lclique(p1, …, pn, G) = γ + E[|S |] + βE[|V − S |]

= γ − (β + 1) ∑
(vi,vj)∈E

wij pi pj +
β
2 ∑

vi≠vj

pi pj

Maximum Clique: Step 3

42

1. Train the network

2. Retrieve the set S from the probabilities of the network using the method of
conditional expectation:

Sort the nodes according to their probabilities. Starting from the high
probability nodes, for each node do:

1. Evaluate the loss for and for
2. Set to either 1 or 0 depending on what achieved the better loss
3. Move on to the next node and repeat from step 1

vi
pi = 1 pi = 0

pi

Graph Isomorphism Networks (GIN)

43

Input:

Goal: learn node or graph representations

G = (V, E)

GIN Core Idea

• Stronger aggregation: sum all neighbor features

• Apply a neural network (MLP) after aggregation

Key Features

• Best at capturing subtle graph structures

• MLP can learn complex local patterns

