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Research Objective 
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Objective
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min
S⊆V

f(S; G) subject to S ∈ Ω

G = (V, E)

Solve combinatorial problems with an unsupervised learning framework

S ⊆ VCost function Feasible Set

Maximum Clique Traveling Salesman Minimum Cut



Example: Maximum Clique

4Maximum Clique

min
S⊆V

− |S | subject to S ∈ Ωclique

Objective: 

find the largest clique  (fully connected subgraph) within a given graph S



Why learning?

5

• Hardcoded heuristics – no 
adaptation to unseen instance 
distributions 

• No learning from previous problem 
instances 

• Require human-engineered 
problem-specific knowledge

• Learns heuristics automatically 
from data 

• Generalizes across problem 
sizes and distributions 

• Fast inference after training

Classic algorithms — heuristicsLearning Based

Many key combinatorial problems are NP-hard.



Learning Paradigms
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Supervised (Pointer Networks, Neurocore) 

• Stable training  
• Good performance

• High computational cost for 
labeling hard instances 

• Limited generalization 

Reinforcement Learning (S2V-DQN, REINFORCE) 

• Flexible  
• Straightforward for simple instances 
• Combinatorial decision making 

problems 

• Training stability 
• Convergence issues 
• Resource intensive



Learning Paradigms
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Unsupervised

• Stable training  
• Computationally efficient for 

labeling 
• Better generalization

• Hard to obtain an integral solution



Background
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Probabilistic Method

9

A non-constructive technique that proves the existence of a mathematical object by showing that the 
probability of randomly selecting such an object is greater than zero.

1. Define a probability distribution over the space of all possible set  on 
the graph 

2. Show that 

S

P(S has property) > 0

Approach to prove the existence of a set of nodes  with a desired property:S



Probabilistic Method - Max Cut 
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Objective: bipartition graph such that cut is maximized

max
S⊂V

cut(S, V − S)

S
V − S



Probabilistic Method - Max Cut 
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1. Define a probability distribution: sample every node (into  ) 

with probability .    

S

1/2 P(u ∈ S) =
1
2

Prove Max-Cut( ) G ≥
|E |
2

𝔼[cut(S, V − S)] = ∑
{u,v}∈E

P({u, v}is a cut edge)

= ∑
{u,v}∈E

P[u ∈ S, v ∉ S] + P[v ∈ S, u ∉ S]

=
|E |
2

S V − S

2. We can see that  P(cut(S, V − S) ≥
|E |
2

) > 0

= ∑
{u,v}∈E

1
4

+
1
4



Method of Conditional Expectation 
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Derandomization via Conditional Expectation 

• At each step, fix the value of one random choice. 
• Choose it so that the conditional expectation of the total cut size does not decrease. 
• After all choices are fixed, the total cut size is still ≥ the original expected value. 

Recap 
• Each vertex is placed randomly in  or .  

• Deterministically choose where to place each vertex to guarantee a cut of size 

S V − S

≥
|E |
2

𝔼[cut(S, V − S)] =
|E |
2



Method of Conditional Expectation 
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Algorithm



Method of Conditional Expectation 
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Algorithm



Method of Conditional Expectation 
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Algorithm



Method of Conditional Expectation 
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Algorithm

𝔼[cut |x1 = 1,x2 = 1] > 𝔼[cut |x1 = 1]



Method of Conditional Expectation 
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Algorithm



Method of Conditional Expectation 
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Algorithm

𝔼[cut |x1 = 1,x2 = 1,x3 = 1] ≤
𝔼[cut |x1 = 1,x2 = 2]



Method of Conditional Expectation 
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Algorithm



Method of Conditional Expectation 
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Algorithm

𝔼[cut |x1 = 1,x2 = 1,x3 = 0,x4 = 1] ≤
𝔼[cut |x1 = 1,x2 = 2,x3 = 0]



Method of Conditional Expectation 

21

Algorithm



Graph Neural Networks (GNN)
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Input:  

Goal: learn node or graph representations

G = (V, E)

GNN Core Idea 

• Each node updates its feature by combining 
information from its neighbors 

• Repeat over multiple layers 

Limitation 

• All neighbors treated equally 

• Sometimes cannot distinguish different graphs



Message Passing
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Key Idea 

• Each node updates its feature by receiving 
messages from neighbors 

• This is repeated over multiple layers to capture 
larger neighborhoods 

Message passing steps 

1. Message: Each node collects features from its 
neighbors. 

2. Aggregation: Combines the incoming messages 
(e.g., mean, sum) 

3. Update: Applies a transformation (like a neural 
network) to update its own feature



Graph Attention Networks (GAT)
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Input:  

Goal: learn node or graph representations

G = (V, E)

GAT Core Idea 

• Learn to weigh neighbors differently 

• Important neighbors contribute more 

Key Features 

• Focuses on relevant parts of the graph 

• Adapts to node importance dynamically



Erdős goes Neural
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Erdos goes Neural
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min
S⊆V

f (S; G) subject to S ∈ Ω

1. Probability function learned by a GNN 

2.  is optimized trough the derived loss functionP(S has property) > 0

To solve the problem



Pipeline
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Erdos goes neural: Loss function
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ℒ(D, G) = E[ f(S; G)] + P(S ∉ Ω)β

Loss distribution of 
the GNN over the  
graph’s nodes Penalty coefficientProbability of  

constraint violation

Theorem (informal): let f be non-negative. There exists a set  that satisfies: 

 

with positive probability.

S* ∼ D

f (S*; G) < ℒ(D; G), S* ∈ Ω,



Experiments
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Experimental Setup

Problem: Maximum clique 

Baseline: neural networks (Toenshoff 2019), classic heuristics, and solvers (CBC, Gurobi 9.0) 

Datasets:  
• Real world: TWITTER, IMDB, COLLAB 
• Hard instances for maximum clique 

Architecture 
• GIN and GAT layers 
• Residual connection and batch norm 
• One hot encoding of random node as input 
• Train with Adam and early stopping
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Results
Test set approximation ratios for all methods on real-world datasets
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Results
Approximation ratios for best methods on hard instances
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Conclusions

Main Features 

• Merges probabilistic method with deep 
learning 

• Principled way to ensure feasibility of 
solutions for various CO problems 

• Competitive performance 
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Conclusions

Limitations 

• Theoretical guarantees — No worst-case 
approximation bounds 

• Lacks strong generalization  

• MIP Solvers like Gurobi are still SoA and greedy 
algorithms can be extremely efficient in practice 

• Can be hard to obtain analytically a differentiable 
expression for certain constraints (e.g., imposing 
path or tree structure on solutions).
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Follow-up 

Erdos goes neural laid the groundwork for unsupervised neural approaches 
to combinatorial optimization

• Meta-EGN (ICLR 2023) Learns to generalize across tasks by optimizing initial 
weights — great generalization but higher training cost 

• Objective Relaxation (NeurIPS 2022) Relax objectives to ensure quality of relaxed 
solution — Theoretically grounded 

• DIFUSCO (NeurIPS 2023) leverages graph-based diffusion models to iteratively 
refine solutions



Thank You
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Erdos Goes Neural: architecture

• 6 GIN layers followed by a multi-head GAT layer 

• Residual connection and batch normalization at 
every layer 

• Graph size normalization, for optimization 
stability  

• The output of GNN to a 2 layers MLP, giving as 
output one value per node 

• Min-Max normalization to rescale the output 
values in the interval [0,1]



Case study: Maximum clique
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ℒclique(D, G) = γ + E[ |S | ] + βE[ |V − S | ]

= γ − (β + 1) ∑
(vi,vj)∈E

wij pi pj +
β
2 ∑

vi≠vj

pi pj

G = (V, E ) |V | = N, |E | = M

min
S⊆V

γ − |S | subject to S ∈ ΩcliqueObjective

Probabilistic penalty  
Loss

With probability at least t, set  satisfies S* ∼ D

γ −
ℒ(D, G)

1 − t
≤ |S* | S* ∈ Ωclique
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Toenshoff 2019
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Maximum Clique: Step 1

1. Use a Bernoulli random variable for each node 

2. Write the cost function for the problem 

3. Build a GNN  
1. Take in input some node features 
2. Output Nx1 vector of probabilities

xi = {1, with probability pi

0, with probability 1 − pi

min
S⊆V

γ − |S | subject to S is a clique

G = (V, E ) |V | = N, |E | = M



Maximum Clique: Step 2
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Derivation of the loss function

l(p1, …, pn, G) = E[ f (S; G)] + P(S ∉ Ω)β

lclique(p1, …, pn, G) = γ + E[ |S | ] + βE[ |V − S | ]

= γ − (β + 1) ∑
(vi,vj)∈E

wij pi pj +
β
2 ∑

vi≠vj

pi pj



Maximum Clique: Step 3
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1. Train the network 

2. Retrieve the set S from the probabilities of the network using the method of 
conditional expectation: 

Sort the nodes according to their probabilities. Starting from the high 
probability nodes, for each node  do: 

1. Evaluate the loss for  and for  
2. Set  to either 1 or 0 depending on what achieved the better loss 
3. Move on to the next node and repeat from step 1

vi
pi = 1 pi = 0

pi



Graph Isomorphism Networks (GIN)
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Input:  

Goal: learn node or graph representations

G = (V, E)

GIN Core Idea 

• Stronger aggregation: sum all neighbor features 

• Apply a neural network (MLP) after aggregation 

Key Features 

• Best at capturing subtle graph structures 

• MLP can learn complex local patterns


