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I. Prologue
A. Faster and Better
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How possible?
How does it work?
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I.B. The Unconstraint
From blog-NickyP we see that: Similar results also shown in Liu2020,
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https://www.lesswrong.com/posts/pHPmMGEMYefk9jLeh/llm-basics-embedding-spaces-transformer-token-vectors-are#y47njA4cxRZYLXFcK
https://www.alphaxiv.org/abs/2001.07885


I.B. The Unconstraint
Althought the norms of word embedding do carry information, as Oyama2022 shown:

Yiming Wang nGPT: Normalized Transformer
nGPT: Normalized Transformer with Representation Learning on
the Hypersphere

4 /
50

https://www.alphaxiv.org/abs/2212.09663


I.B. The Unconstraint
However, the norms of these embeddings keep unconstraintly increasing during training, as Oyama2022,shown:

So what?
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I.B. The Unconstraint
Rybakov2024 compared two models (diverged vs converging)
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https://www.alphaxiv.org/pdf/2410.16682v1


I.B. The Unconstraint

, and Rybakov2024 showed that:
unbounded output L2 norm growth

exploding input gradients

disrupting training stability
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https://www.alphaxiv.org/pdf/2410.16682v1


I.B. The Unconstraint
The influence of the unbonded -norm of the linear layer on logits and gradients Rybakov2024 shown:l  2
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II. From GPT to nGPT

Transformer Normalized Transformer

Final: 

Transformer vs. Normalized Transformer.

Architecture Modification

h  ←A ATTN(RMSNorm(h)) h  ←A Norm(ATTN(h))

h ← h + h  A h ← Norm(h + α  (h  −A A h))

h  ←M MLP(RMSNorm(h)) h  ←M Norm(MLP(h))

h ← h + h  M h ← Norm(h + α  (h  −M M h))

h ← RMSNorm(h)
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II.A. Which Normalization?
Right now we have BatchNorm (Ioffy2015), LayerNorm (Ba2016), post-LayerNorm (Xiong2020), MixNorm (Hu2021), qk-norm (Henry2020),
DeepNorm (Wang2022), HybridNorm (Zhuo2025) , even NormFormer (Shleifer2021).

BNBN LNLN ININGNGN
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https://www.alphaxiv.org/abs/1502.03167
https://alphaxiv.org/abs/1607.06450
https://arxiv.org/abs/2002.04745
https://arxiv.org/abs/2110.11478
https://arxiv.org/abs/2010.04245
https://arxiv.org/abs/2203.00555
https://arxiv.org/abs/2503.04598
https://arxiv.org/abs/2110.09456


II.A. Which Normalization?
It seems that we need to normalzize the embeddings, but which kind of normalizaiton are you talking about?
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II.A. Which Normalization?
post-LN is deploy in original Transformer Vaswani2017

a residual connection followed up with a post-LN for each sublayer in each encoder.

`
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II.A. Which Normalization?
post-LN is deploy in original Transformer Vaswani2017:

visualizing the vectors within post-LN operation and self-attention
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II.A. Which Normalization?
However, Xiong2020 shown that post-LN must learning rate warmup

to pre-LN? or to post-LN?
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https://www.alphaxiv.org/abs/2002.04745


II.B. Totally Normlization!
Transformer Normalized Transformer

Final: 

Transformer vs. Normalized Transformer.

h  ←A ATTN(RMSNorm(h)) h  ←A Norm(ATTN(h))

h ← h + h  A h ← Norm(h + α  (h  −A A h))

h  ←M MLP(RMSNorm(h)) h  ←M Norm(MLP(h))

h ← h + h  M h ← Norm(h + α  (h  −M M h))

h ← RMSNorm(h)
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II.B. Totally Normlization!
After normalization, the outputs from the attention and MLP blocks (  and ) can be seen as target points on a hypersphere. The vectors

 and  act as direction vectors pointing toward these goal points.

hA h  M

h  −A h h  −M h

h  ← Norm(ATTN(h))A

h ← Norm(h + α  (h  − h))A A

h  ← Norm(MLP(h))M

h ← Norm(h + α  (h  − h))M M
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II.B. Totally Normlization!
After normalization, the outputs from the attention and MLP blocks (  and ) can be seen as target points on a hypersphere. The vectors

 and  act as direction vectors pointing toward these goal points.

hA h  M

h  −A h h  −M h
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II.B. Totally Normlization!
After applying Norm  for "inner" hidden updates, which retracts the updated state back onto the hypersphere (a retraction step), nGPT

effectively performs updates along the geodesic on the manifold.

 

LERP(a,b;α) = (1 − α)a+ αb

SLERP(a,b;α) =  a+  b
sin(θ)

sin(1 − α)θ
sin(θ)

sin(αθ)
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II.C. What’s changed?
1. The shape of Loss Landscape

Loss landscape: the surface of global loss function  on parameter space 

As Odonnat2024b, Odonnat2024b shown:

loss spikes usually co-occur with high gradient norm updates

loss spikes are linked to the high curvature of internal network functions.

L Θ
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https://alphaxiv.org/pdf/2410.24050v1
https://www.alphaxiv.org/abs/2410.24050


2. A better loss landscape for optimizaiton

Researchers (e.g. Li2017) shown that: specific architecture design can make neural network’s optimization more smooth. e.g. skip-connection.
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https://www.alphaxiv.org/abs/1712.09913


2. A better loss landscape for optimizaiton

From the perspective of condition number of matrix, Zhao2024:

the matrix’s conditional number increase as the network grow deeper ( )

large conditional number indicate that the loss landscape has directions with significant differences in curvature

O(L )2
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III. Epilogue
III.A. Results
1. Faster

nGPT’s results are imprising: The training of 0.5B and 1B nGPT models is about 4x, 10x and 20x faster (in terms of tokens) on 1k, 4k and 8k
context lengths, respectively.
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III.A. Results
2. Better

nGPT’s results are imprising:
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III.A. Results
2. Better

nGPT’s results are imprising:
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III.A. Results
3. Why Faster&Better?

According to Section 2.3, figure 6 and Apendix A.2, in fact, astonishingly, nGPT learns to apply only modest eigen learning rates to update, and

shares similar optimal (initial) learning rate with baseline GPT2. But much much faster, why?
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III.A. Results
3. Why Faster&Better?

According to Section 2.3, figure 6 and Apendix A.2, in fact, astonishingly, nGPT learns to apply only modest eigen learning rates to update, and
shares similar optimal (initial) learning rate with baseline GPT2. But much much faster, why?

Firmer update steps

Reshapedthe loss landscape
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III.A. Results
3. Why Faster&Better?

Firmer update steps

The update steps of model’s inner states,  , recall figure 6, the inner updates that controlled by  are surely modest,
ranging from 20%~40%. We can see these "modest" as firmer, more efficient information updates.

Since the inner update of nGPT is firmer, the quality of gradient signals that Adam received is better, leading to efficient parameter updates.
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III.A. Results
3. Why Faster&Better?

Reshapedthe loss landscape

frequently normalization and hypersphere constraint, by constraining the parameter search space (the zone that optimizer "walk" on), such

that it is more friendly, more navigable for AdamW to iterate.
Figure 5 shows that the conditional number of nGPT’s weight matrices are lower, hence uttering more stable , uniform, mathematically

healthy gradient updates,
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III.A. Results
4. Summary

faster convergence means: When walking towards a more generalizable solution,

each step is a high quality optimizing update,

within a smoother loss landscape for optimizer to wander,
more effectively, directly.

Hence, promising a better result, under similar training budgets.
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III.B. Takeaways
1. the -norms of embedding vectors, weight matrices columns vectors, hidden vectors… are unconstrained in GPT2l  2
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III.B. Takeaways
1. the -norms of embedding vectors, weight matrices columns vectors, hidden vectors… are unconstrained in GPT2

2. normalized them on the unit hypersphere

3. all inner-products are cosine similarity, which is bounded between 

l  2

[−1, 1]
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III.B. Takeaways
1. the -norms of embedding vectors, weight matrices columns vectors, hidden vectors… are unconstrained in GPT2

2. normalized them on the unit hypersphere

3. Riemannian gradient descent: updating gradients on hypersphere, with eigen-learning-rate

l  2
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III.B. Takeaways
1. the -norms of embedding vectors, weight matrices columns vectors, hidden vectors… are unconstrained in GPT2

2. normalized them on the unit hypersphere

3. Riemannian gradient descent: updating gradients on hypersphere, with eigen-learning-rate

4. FASTER training, BETTER results

l  2
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III.C. Open Quesitons
1. Really? "baseline" Transformer?

What is still taken for granted in Transformer? All that is solid melts into air…

w/o Attention Heads

Removing attention heads in transformer (Voita2019, Michel2019) can maintain performance.
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1. Really? "baseline" Transformer?
What is still taken for granted in Transformer? All that is solid melts into air…

w/o Normalization

Zhu2025 replaces Transformer normalization layers (like LayerNorm or RMSNorm) with a very simple element-wise operation DyT(x) = 
.

γ ×
tanh(αx) + β

tanh(αx) = αx −  +
3

α x3 3

O(x )5
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2. Really? Hypersphere?
Intrinsic Dimension: While neural activations (vectors) can be very high-dimensional (e.g., thousands of dimensions), their actual arrangement

might be simpler locally. It might be possible to describe their local structure with fewer 'directions' (dimensions) after suitable transformations.
This 'fewer number of directions' is the estimated 'intrinsic dimension.'

For tree-like or hierarchical data, significant research (e.g. Ganea2018, Tifrea2018, Chami2019, Bachmann2019, Skopek2019, Shimizu2020,

Mettes2022, Yang2024 on HyperbolicNN, Ermolov2022, Bdeir2023 on hyperbolic ViT）) suggest that non-Euclidean geometry is a promising
direction, from embedding space design to model architecture.
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https://www.alphaxiv.org/pdf/1805.09112
https://www.alphaxiv.org/abs/1810.06546
https://www.alphaxiv.org/abs/1910.12933
https://www.alphaxiv.org/abs/1911.05076
https://www.alphaxiv.org/abs/1911.08411
https://www.alphaxiv.org/abs/2006.08210
https://sites.google.com/view/hyperbolic-tutorial-eccv22/slides
https://www.alphaxiv.org/abs/2407.01290
https://www.alphaxiv.org/abs/2203.10833
https://www.alphaxiv.org/abs/2303.15919


Thank You & Further Discussion
Questions?



IV. Appendix
A. Faster and Better
Data level

high-quality, large-scale datasets
data-preprocessing, pipeline optimization

...

Architecture level

efficient attention mechanisms, e.g. Flash Attention Dao2022

proper optimizing techniques, e.g. optimizers, warmup, weight decay, dropout
...

Engineering tricks

mixed precision training

parallelism strategies
...
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https://alphaxiv.org/pdf/2205.14135


IV.B. Manifold Hypothesis
Where do high-dimensional data reside on?

Instead of filling the entire  space, meaningful word embeddings (or hidden states) reside on one or more low-dimensional representation
manifolds  (some locally Euclidean spaces) possessing specific geometric structure.

For instance, (semantically) similar
items are closer in the
embedding space; this proximity
might be the geodesic distance
on a curved manifold.

1. one can refer to blog-Colah-a, blog-Colah-b, Robinson2025 for fun. ↩

Rd  model

[1]
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http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/
https://colah.github.io/posts/2014-10-Visualizing-MNIST/
https://alphaxiv.org/abs/2504.01002v1


IV.C. Loss Landscape
1. Towards a better landscape

Researchers (e.g.Santurkar2018,Balestriero2022) shown that: normalizaiton optimizes loss landscape, not only smooothing it, but also let model
to stand at a better optimizing starting point.
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https://www.alphaxiv.org/abs/1805.11604
https://www.alphaxiv.org/pdf/2209.14778


IV.C. Loss Landscape
2. Towards the mininum…

Loss spikes are linked to the high curvature of internal network functions. A small update to an element  can result in a substantial change to its normalized version ,

significantly altering the network’s subsequent behavior. – Odonnat2024b

such as  near the origin:

x  ∣∣x∣∣  2

x

f(x) =  ∣∣x∣∣  2

x

Yiming Wang nGPT: Normalized Transformer
nGPT: Normalized Transformer with Representation Learning on
the Hypersphere

41 /
50

https://www.alphaxiv.org/abs/2410.24050


IV.C. Loss Landscape
2. Towards the mininum…

From the perspective of optimizing progress, Gilmer2020 shown that: successful model and hyperparameter choices allow the early optimization
trajectory to either avoid – or navigate out of – regions of high curvature and into flatter regions that tolerate a higher learning rate.
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https://alphaxiv.org/pdf/2110.04369


IV.C. Loss Landscape
2. Towards the mininum…

From the perspective of initializaiton, researchers(e.g. Fort2018, Fort2019a, Fort2019b) shown that,

Random initializations explore entirely different modes,

Faster training implys exploring the relatively flat zones ,by all means
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https://www.alphaxiv.org/abs/1807.02581
https://www.alphaxiv.org/abs/1906.04724
https://www.alphaxiv.org/abs/1912.02757


IV.D. Which PE?
0. Positional Encoding vs Positional Embedding

Denote the size of vocabulary as , token to predict as , token input sequence as , learnable, unconstrained embedding
matrices 

self-attention operation is permutation invariant, it is important to use proper positional encoding to provide order information to the model. –

blog-weng

V t  i x = {t  , t  , … , t  }1 2 i−1

E  ,E  ∈input output RV ×d  model
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https://lilianweng.github.io/posts/2023-01-27-the-transformer-family-v2/


IV.D. Which PE?
1. Positional Encoding vs Positional Embedding

Can we give the position information to input tokens with specific embedding, thus differentiating tokens based on their locations?
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IV.D. Which PE?
2. RoPE: Su2021

By using a rotation matrix, Rotary Positional Embedding (RoPE) (Su2021) unifies advantages of both absolute  and relative  positional

embedding schemes.
images from blog-weng

1. Su2024: through sinusoidal or learnable embedding ↩

2. Su2024: by adding relative biases ↩

[1] [2]
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https://www.alphaxiv.org/abs/2104.09864
https://www.alphaxiv.org/abs/2104.09864
https://lilianweng.github.io/posts/2023-01-27-the-transformer-family-v2/
https://www.alphaxiv.org/abs/2403.13298
https://www.alphaxiv.org/abs/2403.13298


IV.D. Which PE?
2. RoPE: Su2021

RoPE first multiplies queries and keys with a rotation matrix i.e. it rotates   and   before taking their inner product. The rotation matrix
is a function of absolute position. Calculating the inner products of rotated queries and keys results in an attention matrix that is a function of
relative position information only. –blog-krasserm

W  x  q m W  x  k n
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https://www.alphaxiv.org/abs/2104.09864
https://krasserm.github.io/2022/12/13/rotary-position-embedding/


IV.D Output Logits
Denote the "transformed" output vector as ,  as the index of position for predicted sequence, and  as the unconstrained
probabilities for each token (aka logits ),

An overview of the evolution and types of activation functions:

h  ∈i Rd  model i z  ∈i RV

z  =i E  h  output i
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IV.D Output Logits
As usual, our logits  come to the cradle of softmax  to convert them into probabilities. Say the chosen token (as prediction token) as , then
denote  as the corresponding logit, then:

z  i τ  j

z  i,τ  j

P(τ  ∣x  , … ,x  ) =j 1 i−1  

 exp(z  )
k=1
∑
V

i,τ  k

exp(z  )i,τ  j
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IV.D Output Logits
Feeling like missing something right? Yes, your intuition is sharp, we add a temperature term :

![](https://charlielehman.github.io/post/visualizing-tempscaling/tempscale_10.gi

s  ∈z RV
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