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Speak, Read and Prompt (SPEAR-TTS)

* High-Fidelity Text-to-Speech with Minimal Supervision
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Supervision

Can we build great TTS with unlabeled data?
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Motivation: Why Do We Need Data-Efficient TTS?

 Traditional TTS requires large labeled datasets
« Hard to adapt to new speakers & languages
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* Audio-only data is abundant and untapped




How Others Approach TTS

Tacotron (2017)
FastSpeech / FastSpeech2 (2019-2020)

VALL-E (2023)
AudioLM (2022)
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SPEAR-TTS
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Two-Stage Architecture: Read & Speak

Understanding Reading
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Two-Stage Architecture: Read & Speak

o0 0 [> Text—Semantic [>. o0 Semantic—Acoustic [> E>

token translation token translation

Text Semantic tokens Acoustic tokens
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Two-Stage Architecture: Read & Speak

« Stage 1: Text —» Semantic Tokens

“Reading”: needs parallel data, but benefits from
audio-only pretraining & backtranslation
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Stage 1: What happens with tokenization?

Training Time:

*(text, audio) pairs.

«audio passed through pretrained tokenizer (HUBERT + K-Means).
converts the audio into a sequence of semantic tokens.

*Now you have:

- Text <~ Semantic tokens
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Two-Stage Architecture: Read & Speak

« Stage 2: Semantic Tokens — Acoustic
Tokens — Audio ( using soundstream)

benefits from

-anslation Speaking”: trained on audio-only data
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Stage 2: What happens with tokenization?

Training Time:

* raw audio.

 audio through a pretrained neural codec — SoundStream.
« audio into acoustic tokens.

« prosody, speaker style, accents, emotions, etc.

- Semantic tokens — Acoustic tokens
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Motivation for Data Efficiency Techniques

A The Problem: Labeled Data is Expensive

Traditional TTS systems (like Tacotron or FastSpeech2) need hundreds of
hours of this data

& But... Unlabeled Audio is Everywhere

How can we use this abundant, unlabeled audio to train powerful TTS
models?

4> The Solution: Data Efficiency Techniques

SPEAR-TTS introduces clever strategies to reduce reliance on
supervised data
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Data Efficiency Techniques

 BART-style pretraining

« Backtranslation for synthetic data
« Example prompting for voice control
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Data Efficiency Techniquesy: BART
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Reference:

Lewis et al., "BART: Denoising Sequence-to-Sequence Pre-training for Natural Language
Generation", arXiv:1910.13461, 2020.
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Data Efficiency Techniques

 BART-style pretraining

« Backtranslation for synthetic data

« Example prompting for voice control
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Data Efficiency Techniques: Backtranslation

* Leverages unlabeled audio-only data

« Generate synthetic text from audio using a reverse model
« Create new pseudo-parallel data (Text «» Audio)

« Benefits from the ASR models
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Data Efficiency Techniques: Backtranslation

: Backtranslation :‘ :

. Small parallel : <speech, transcript> <speech, synth. transcript> Large synthetic :
. text-speech R > parallel text-speech :
. dataset B Enc dataset

<synth. transcript, speech>

PTTTTTTTTTTTTTTToToT T ' <orig. transcript, speech>
Large : i Pretraining Finetuning
Speech-only f ...................................... .......................................
dataset : <corrupt(speech), speech> : P g 531 - Dec
frozen ——— training

<input, target>

@» trained W -------- > inference
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Data Efficiency Techniques: Backtranslation

ul Example Table: Types of Data Pairs in TTS

Type of Data Text

Supervised "Hello, how are you?"

Unsupervised —

Synthetic Pair "Hi, how are you?"

O Human speech
¥ Human speech

¥ Human speech

Notes

Real ground truth

No text available

Text generated via backtranslation
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Data Efficiency Techniques

 BART-style pretraining
« Backtranslation for synthetic data

« Example prompting for voice control
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Data Efficiency Techniques: voice control
with prompting

Semantic and tokens of the voice e
sample
Prompt separator token 0
. Semantic—Acoustic
Unprompted generation O 0 O [> token translation [>
Model input

A

Promptedgeneraton B @ @ ©® @ @ [> Semantic—Acoustic [> 0

token translation
Output
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Data Efficiency Techniques: voice control
with prompting — Demo (the prompt)
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Data Efficiency Techniques: voice control
with prompting — Demo (the outcome)

Text: "l see a crowd in one corner of the garden everybody standing still and looking up"
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Data sets used

Name Size, hours Transcripts Used for
used?

o e s Acoustic & semantic tokens,
LibriLight 60k X pretraining &1, and training So
LJSpeech 0.25..24 v Finetuning &; for backtranslation
LibriTTS train 551 X Source of backtranslated data
LibriSpeech test-clean C ey ens :

(shorter than 10s) 3 v Intelligibility evaluation
LibriSpeech train-clean + 105 X Training the voice classifier used
test-clean in the evaluation

Table 1: Datasets used in the paper. For each dataset, we highlight its size, use, and whether textual
transcripts are used.
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Data sets used

£ 1. LibriTTS (Supervised Data)

*English audiobook recordings from the public domain
(LibriVox project).

-Contains text + matching audio (parallel data).
*Designed specifically for TTS tasks.

*High-quality, but limited in size
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Data sets used

2. LibriLight (Unsupervised Data)

*60,000+ hours of English audiobook recordings —
but with no transcripts.

-audio-only data.

For Stage 2 and for backtranslation.
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Data sets used

€ 3. VCTK
different English speakers (diverse accents).

-Contains text + audio
‘used for evaluating speaker adaptation.
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* CER (Character Error Rate): Faithfulness to input text using ASR
transcription
(e.g., 0.98% on original audio)

* Voice Preservation: Measures consistency between prompt and
generated speech using a speaker classifier
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 MOS (Mean Opinion Score): Human-rated naturalness and audio
quality on a 1-5 scale, the best evaluation, hard to be objective

Score Description Meaning

5 Excellent Completely natural

4 Good Mostly natural

3 Fair Somewhat unnatural

2 Poor Unnatural, noticeable issues

1 Bad Completely unnatural
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Key Results

Metric

CER

MOS

Speaker Accuracy

Data Efficiency

SPEAR-TTS

2.21%

4.96

92.4%

240,000x less data

Seminar in Deep Neural
Networks

Reference

(15 min parallel data)

4.92 (Ground Truth)

Prompted generation

Compared to VALL-E
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SPEAR-TTS vs. Previous Models

» FastSpeech2-LR: Needs more data, lower quality
* VALL-E: Requires huge parallel datasets
« SPEAR-TTS: Data-efficient, flexible, high-quality

SPEAR-TTS outperforms older models in low-resource settings.



s oa Seminar in Deep Neural
E'HZUf'ICh Networks

Demo-time!

« Compare samples from SPEAR-TTS vs FastSpeechLR
« Highlight the MOS gap (4.75 vs. 3.35)

https://google-research.qgithub.io/seanet/speartts/examples/



https://google-research.github.io/seanet/speartts/examples/
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Demo

"l will go,"
said Beth, a N N
ittle 1)) ) s
frightened at N 77 NI J ¢
the
passionate
appeal.
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Demo

Get my

things ready, |

get you s g 9 ..\n g i ’ I ’ /|
ready. We're [\ [\ / [\ / [\ /

departing in
two hours."
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Demo

"Nobody but
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Strengths & Limitations

+ Data efficiency

+ zero-shot

- large audio-only datasets
- limited to English
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WhisperSpeech: Built on SPEAR-TTS, Improved

Two-stage architecture (SPEAR-TTS)
Whisper ASR for better backtranslation
Stronger zero-shot, multilingual

Less parallel data needed

More robust semantic understanding
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Ethical Concerns

e Voice Cloning & Deepfakes
e Lack of Consent
 Misinformation & Fraud

* Accountability & Detection

How to Address These Concerns:
*Develop detection mechanisms
sImplement consent-based systems
Establish legal frameworks

*Raise public awareness

No code/model released due to misuse risk
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Questions or thoughts?

g3

inar in Deep Neural
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Data Efficiency Techniques: Backtranslation

Backtranslation is used in Stage 1 ("Reading")
Because Stage 1 needs to learn how to map text —
semantic tokens, but there’s limited real parallel data.

So, they:
1.Take audio-only data.

2.Use a reverse model (semantic tokens — text) to
generate synthetic text.

3.Now they have a synthetic text + real semantic tokens
pair to train Stage 1.

* This creates pseudo-parallel data for Stage 1.
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