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• High-Fidelity Text-to-Speech with Minimal Supervision

Speak, Read and Prompt (SPEAR-TTS)



High-Fidelity Text-to-

Speech with Minimal 

Supervision
Can we build great TTS with unlabeled data?

Organisationseinheit verbal

optional auf 2 Zeilen
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Motivation: Why Do We Need Data-Efficient TTS?

• Traditional TTS requires large labeled datasets

• Hard to adapt to new speakers & languages

• Audio-only data is abundant and untapped



How Others Approach TTS

1. Tacotron (2017)

2. FastSpeech / FastSpeech2 (2019-2020)

3. VALL-E (2023)

4. AudioLM (2022)

SPEAR-TTS
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Two-Stage Architecture: Read & Speak

Understanding Reading
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Two-Stage Architecture: Read & Speak
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Two-Stage Architecture: Read & Speak

• Stage 1: Text → Semantic Tokens
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Stage 1: What happens with tokenization?
Training Time:

•(text, audio) pairs.

•audio passed through pretrained tokenizer (HuBERT + K-Means).

•converts the audio into a sequence of semantic tokens.

•Now you have:

➔ Text Semantic tokens
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Two-Stage Architecture: Read & Speak

• Stage 2: Semantic Tokens → Acoustic 

Tokens → Audio ( using soundstream)
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Stage 2: What happens with tokenization?
Training Time:

• raw audio.

• audio through a pretrained neural codec — SoundStream.

• audio into acoustic tokens.

• prosody, speaker style, accents, emotions, etc.

• ➔ Semantic tokens → Acoustic tokens
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Motivation for Data Efficiency Techniques 

The Problem: Labeled Data is Expensive

Traditional TTS systems (like Tacotron or FastSpeech2) need hundreds of 

hours of this data

But... Unlabeled Audio is Everywhere

How can we use this abundant, unlabeled audio to train powerful TTS 
models?

The Solution: Data Efficiency Techniques

SPEAR-TTS introduces clever strategies to reduce reliance on 

supervised data



Seminar in Deep Neural 

Networks

Data Efficiency Techniques

• BART-style pretraining

• Backtranslation for synthetic data

• Example prompting for voice control
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Data Efficiency Techniquesy: BART

• The input sequence is corrupted (e.g., by masking, deleting, 

or shuffling parts).

• The model is trained to reconstruct the original, 

uncorrupted sequence.

Reference:
Lewis et al., "BART: Denoising Sequence-to-Sequence Pre-training for Natural Language 

Generation", arXiv:1910.13461, 2020.
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Data Efficiency Techniques

• BART-style pretraining

• Backtranslation for synthetic data

• Example prompting for voice control
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Data Efficiency Techniques: Backtranslation

• Leverages unlabeled audio-only data

• Generate synthetic text from audio using a reverse model

• Create new pseudo-parallel data (Text Audio)

• Benefits from the ASR models
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Data Efficiency Techniques: Backtranslation
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Data Efficiency Techniques: Backtranslation
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Data Efficiency Techniques

• BART-style pretraining

• Backtranslation for synthetic data

• Example prompting for voice control
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Data Efficiency Techniques: voice control 

with prompting
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Data Efficiency Techniques: voice control 

with prompting – Demo (the prompt)
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Data Efficiency Techniques: voice control 

with prompting – Demo (the outcome)

Text: "I see a crowd in one corner of the garden everybody standing still and looking up"
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Data sets used
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Data sets used

1. LibriTTS (Supervised Data)

•English audiobook recordings from the public domain 

(LibriVox project).

•Contains text + matching audio (parallel data).

•Designed specifically for TTS tasks.

•High-quality, but limited in size
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Data sets used

2. LibriLight (Unsupervised Data)

•60,000+ hours of English audiobook recordings —

but with no transcripts.

•audio-only data.

•For Stage 2 and for backtranslation.
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Data sets used

3. VCTK

•different English speakers (diverse accents).

•Contains text + audio

•used for evaluating speaker adaptation.
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Metrics

• CER (Character Error Rate):  Faithfulness to input text using ASR 

transcription 

(e.g., 0.98% on original audio)

• Voice Preservation: Measures consistency between prompt and 

generated speech using a speaker classifier
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Metrics

• MOS (Mean Opinion Score): Human-rated naturalness and audio 

quality on a 1–5 scale, the best evaluation, hard to be objective
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Key Results
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SPEAR-TTS vs. Previous Models

• FastSpeech2-LR: Needs more data, lower quality

• VALL-E: Requires huge parallel datasets

• SPEAR-TTS: Data-efficient, flexible, high-quality

SPEAR-TTS outperforms older models in low-resource settings.
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Demo-time!

https://google-research.github.io/seanet/speartts/examples/

• Compare samples from SPEAR-TTS vs FastSpeechLR

• Highlight the MOS gap (4.75 vs. 3.35)

https://google-research.github.io/seanet/speartts/examples/
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Demo

"I will go," 

said Beth, a 

little 

frightened at 

the 
passionate 

appeal.
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Demo

Get my 

things ready, 

get yours 

ready. We're 

departing in 
two hours."
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Demo

"Nobody but 

me, till now, 

has ever 

heard.
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Strengths & Limitations

+ Data efficiency

+ zero-shot

- large audio-only datasets

- limited to English



WhisperSpeech: Built on SPEAR-TTS, Improved

• Two-stage architecture (SPEAR-TTS)

• Whisper ASR for better backtranslation

• Stronger zero-shot, multilingual

• Less parallel data needed

• More robust semantic understanding
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Ethical Concerns

• Voice Cloning & Deepfakes
• Lack of Consent
• Misinformation & Fraud
• Accountability & Detection

How to Address These Concerns:

•Develop detection mechanisms

•Implement consent-based systems

•Establish legal frameworks

•Raise public awareness

No code/model released due to misuse risk
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Questions or thoughts?
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Data Efficiency Techniques: Backtranslation

Backtranslation is used in Stage 1 ("Reading")

Because Stage 1 needs to learn how to map text → 

semantic tokens, but there’s limited real parallel data.

So, they:

1.Take audio-only data.

2.Use a reverse model (semantic tokens → text) to 

generate synthetic text.

3.Now they have a synthetic text + real semantic tokens 

pair to train Stage 1.

• This creates pseudo-parallel data for Stage 1.
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