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Geo-Routing
Chapter 3
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Rating

Area maturity

Practical importance

Theoretical importance

First steps                                                         Text book

No apps                                                     Mission critical

Not really                                                          Must have
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Classic routing overview

Geo-routing

Greedy geo-routing

Euclidean and planar graphs

Face Routing

Greedy and Face Routing

3D Geo-Routing

Geometric Routing without Geometry

Overview Classic Routing 1: Flooding

What is Routing? 

s sends the 

message to all its neighbors; when a node other than destination t

receives the message the first time it re-sends it to all its neighbors.

+ simple (sequence numbers)

a node might see the same message 

more than once. (How often?)

what if the network is huge but the 

target t sits just next to the source s?

We need a smarter routing algorithm

s

a

b

t

c



Classic Routing 2: Link-State Routing Protocols

Link-state routing protocols are a preferred iBGP method (within an 

autonomous system) in the Internet

Idea: periodic notification of all nodes about the complete graph

Routers then forward a message along (for example) the shortest 

path in the graph

+ message follows shortest path

every node needs to store whole graph,

even links that are not on any path

every node needs to send and receive

messages that describe the whole

graph regularly

s

a

b

t

c

Classic Routing 3: Distance Vector Routing Protocols

The predominant method for wired networks

Idea: each node stores a routing table that has an entry to each 

destination (destination, distance, neighbor)

If a router notices a change in its neighborhood or receives an 

update message from a neighbor, it updates its routing table 

accordingly and sends an update to all its neighbors

+ message follows shortest path

+ only send updates when topology changes

most topology changes

are irrelevant for a given

source/destination pair

every node needs to 

store a big table

count-to-infinity problem

s

a

b

t

c

t=1

t?

Dest Dir Dst

a a 1

b b 1

c b 2

t b 2

t=2
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Discussion of Classic Routing Protocols

Proactive Routing Protocols

Both link-state and distance vector 

established and updated even if 

they are never needed.

If there is almost no mobility, 

proactive algorithms are superior 

because they never have to 

exchange information and find 

optimal routes easily.

Reactive Routing Protocols

not scale

If mobility is high and data 

transmission rare, reactive 

algorithms are superior; in the 

extreme case of almost no data 

and very much mobility the simple 

flooding protocol might be a good 

choice. 

There is no ; the choice of the routing protocol depends 

on the circumstances. Of particular importance is the mobility/data ratio.
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Routing in Ad-Hoc Networks

Reliability

Nodes in an ad-hoc network are not 100% reliable

Algorithms need to find alternate routes when nodes are failing

Mobile Ad-Hoc Network (MANET)

10 Tricks 210 routing algorithms

In reality there are almost that many proposals!

Q: How good are these routing algorithms?!? Any hard results?

A: Almost none! Method-of-
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Geometric (geographic, directional, position-based) routing 

In this chapter we will assume that the nodes are location aware 

(they have GPS, Galileo, or an ad-hoc way to figure out their 

coordinates), and that we know where the destination is.

Then we

simply route

towards the

destination

s

t
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Geometric routing 

Problem: What if there is no path in the right direction?

We need a guaranteed way to reach a destination even in the case 

Hack: as in flooding

nodes keep track

of the messages

they have already

seen, and then they

backtrack* from there

*backtracking? Does this 

mean that we need a stack?!?

s

t

?
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Alice

Bob

Geo-Routing: Strictly Local

???
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Greedy Geo-Routing?

Alice

Bob
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Greedy Geo-Routing?

Carol

Bob

?
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What is Geographic Routing?

A.k.a. geometric, location-based, position-based, etc.

Each node knows its own position and position of neighbors

Source knows the position of the destination

No routing tables stored in nodes!

Geographic routing makes sense

Own position: GPS/Galileo, local positioning algorithms

Destination: Geocasting, location services, source routing++

Learn about ad-hoc routing in general

Greedy routing

Greedy routing

looks promising.

Maybe there is a

way to choose the

next neighbor

and a particular

graph where we 

always reach the

destination?

Examples why greedy algorithms fail

We greedily route to the neighbor
which is closest to the destination:
But both neighbors of x are
not closer to destination D

Also the best angle approach
might fail, even in a triangulation:
if, in the example on the right,
you always follow the edge with
the narrowest angle to destination
t, you will forward on a loop
v0, w0, v1, w1 3, w3, v0



Euclidean and Planar Graphs 

Euclidean: Points in the plane, with coordinates

Euclidean planar graphs (planar embeddings) simplify geometric 

routing.

Unit disk graph

We are given a set V of nodes in the plane (points with coordinates).

The unit disk graph UDG(V) is defined as an undirected graph (with 

E being a set of undirected edges). There is an edge between two 

nodes u,v iff the Euclidean distance between u and v is at most 1.

Think of the unit distance as the maximum transmission range.

We assume that the unit disk graph 

UDG is connected (that is, there is a 

path between each pair of nodes)

The unit disk graph has many edges.

Can we drop some edges in the UDG

to reduce complexity?

Planar graphs

Definition: A planar graph is a graph 

that can be drawn in the plane such 

that its edges only intersect at their 

common end-vertices.

that is edge contractible to K5 or K3,3.

planar graph with n nodes, m edges, and f

faces has n m + f = 2.

Right: Example with 9 vertices,14 edges, 

called the infinite face)

Theorem: A simple planar graph with
n nodes has at most 3n 6 edges, for n¸3.

Gabriel Graph

Let disk(u,v) be a disk with diameter (u,v)

that is determined by the two points u,v. 

The Gabriel Graph GG(V) is defined 

as an undirected graph (with E being 

a set of undirected edges). There is an 

edge between two nodes u,v iff the 

disk(u,v) including boundary contains no 

other points.

As we will see the Gabriel Graph 

has interesting properties.

disk(u,v)

v

u



Delaunay Triangulation

Let disk(u,v,w) be a disk defined by

the three points u,v,w. 

The Delaunay Triangulation (Graph) 

DT(V) is defined as an undirected 

graph (with E being a set of undirected 

edges). There is a triangle of edges 

between three nodes u,v,w iff the 

disk(u,v,w) contains no other points.

The Delaunay Triangulation is the

dual of the Voronoi diagram, and

widely used in various CS areas;

the DT is planar; the distance of a

constant factor of the s-t distance.

disk(u,v,w)

v

u
w

Other planar graphs

Relative Neighborhood Graph RNG(V)

An edge e = (u,v) is in the RNG(V) iff 

there is no node w with (u,w) < (u,v) 

and (v,w) < (u,v).

Minimum Spanning Tree MST(V)

A subset of E of G of minimum weight

which forms a tree on V.

vu

Properties of planar graphs

Theorem 1:

Corollary:

Since the MST(V) is connected and the DT(V) is planar, all the 

planar graphs in Theorem 1 are connected and planar.

Theorem 2:

The Gabriel Graph contains the Minimum Energy Path
(for any path loss exponent ¸ 2)

Corollary:
GG(V) Å UDG(V) contains the Minimum Energy Path in UDG(V)

MST( ) RNG( ) GG( ) DT( )V V V V

Routing on Delaunay Triangulation?

Let d be the Euclidean 

distance of source s and

destination t

Let c be the sum of the

distances of the links of

the shortest path in the

Delaunay Triangulation

It was shown that c = (d)

Three problems:

1) How do we find this best route in the DT? With flooding?!?

2) How do we find the DT at all in a distributed fashion?

3) Worse: The DT contains edges that are not in the UDG, that is, 

s t
d



Breakthrough idea: route on faces

Remember the

Idea: 

Route along the 

boundaries of 

the faces that 

lie on the 

source destination 

line

Face Routing

0. Let f be the face 
incident to the source 
s, intersected by (s,t)

1. Explore the boundary 
of f; remember the 
point p where the 
boundary 
intersects with (s,t) 
which is nearest to t; 
after traversing 
the whole 
boundary, go back 
to p, switch the face, 
and repeat 1 until you 
hit destination t.
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Face Routing Works on Any Graph

s

t
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All necessary information is stored in the message

Source and destination positions

Point of transition to next face

Completely local:

Faces are implicit

Planarity of graph is computed locally (not an assumption)

Computation for instance with Gabriel Graph

Face Routing Properties
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Face routing is correct

Theorem: Face routing terminates on any simple planar graph in 

O(n) steps, where n is the number of nodes in the network

Proof: A simple planar graph has at most 3n 6  edges. You leave 

each face at the point that is closest to the destination, that is, you 

never visit a face twice, because you can order the faces that 

intersect the source destination line on the exit point. Each edge is 

in at most 2 faces. Therefore each edge is visited at most 4 times. 

The algorithm terminates in O(n) steps.
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Is there something better than Face Routing?

faces that point away from the destination.

Efficiency: Seems to be practically more efficient than face routing. 

But the theoretical worst case is worse O(n2).

route through all nodes of the network. Instead we want a routing 

algorithm where the cost is a function of the cost of the best route in 

the unit disk graph (and independent of the number of nodes).
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Face Routing

Theorem: Face Routing reaches destination in O(n) 

steps

But: Can be very bad compared to the optimal route
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Bounding Searchable Area

ts



Adaptive Face Routing (AFR)

Idea: Use

face routing

together with

ad hoc routing

trick 1!!

route beyond

some radius

r by branching

the planar graph

within an ellipse

of exponentially

growing size.

AFR Example Continued

We grow the

ellipse and

find a path
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AFR Pseudo-Code

0. Calculate G = GG(V) Å UDG(V)

Set c to be twice the Euclidean source destination distance.

1. Nodes w 2 W are nodes where the path s-w-t is larger than c. Do 

face routing on the graph G, but without visiting nodes in W. (This is 

like pruning the graph G with an ellipse.) You either reach the 

destination, or you are stuck at a face (that is, you do not find a 

better exit point.)

2. If step 1 did not succeed, double c and go back to step 1.

Note: All the steps can be done completely locally,

and the nodes need no local storage.
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The (1) Model

We simplify the model by assuming that nodes are sufficiently far 

apart; that is, there is a constant d0 such that all pairs of nodes have 

at least distance d0. We call this the (1) model.

This simplification is natural because nodes with transmission range 

Lemma: In the (1) model, all natural cost models (such as the 

Euclidean distance, the energy metric, the link distance, or hybrids 

of these) are equal up to a constant factor.

Remark: The properties we use from the (1) model can also be 

established with a backbone graph construction.
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Analysis of AFR in the (1) model

Lemma 1: In an ellipse of size c there are at most O(c2) nodes. 

Lemma 2: In an ellipse of size c, face routing terminates in O(c2) 

steps, either by finding the destination, or by not finding a new face.

Lemma 3: Let the optimal source destination route in the UDG 

have cost c*. Then this route c* must be in any ellipse of size c* or 

larger.

Theorem: AFR terminates with cost O(c*2).

Proof: Summing up all the costs until we have the right ellipse size 

is bounded by the size of the cost of the right ellipse size.

Lower Bound

The network on the right

constructs a lower bound.

The destination is the

center of the circle, 

the source any node

on the ring.

Finding the right chain

costs (c*2), 

even for randomized

algorithms

Theorem: 

AFR is asymptotically optimal.

Ad Hoc and Sensor Networks   Roger Wattenhofer   3/39Ad Hoc and Sensor Networks   Roger Wattenhofer   

Non-geometric routing algorithms

In the (1) model, a standard flooding algorithm enhanced with trick 

1 will (for the same reasons) also cost O(c*2). 

However, such a flooding algorithm needs O(1) extra storage at 

each node (a node needs to know whether it has already forwarded 

a message).

Therefore, there is a trade-off between O(1) storage at each node or 

that nodes are location aware, and also location aware about the 

destination. This is intriguing.

GOAFR Greedy Other Adaptive Face Routing

Other AFR: In each 

face proceed to node

closest to destination

AFR Algorithm is not very efficient (especially in dense graphs)

Combine Greedy and (Other Adaptive) Face Routing
Route greedily as long as possible

Then route greedily again



GOAFR+

GOAFR+ improvements:
Early fallback to greedy routing

(Circle centered at destination instead of ellipse)

Early Fallback to Greedy Routing?

We could fall back to greedy routing as soon as we are closer to t 

than the local minimum

But:

(c*2) edges is traversed (c*) times (c*3) steps
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GOAFR Greedy Other Adaptive Face Routing

Early fallback to greedy routing:
Use counters p and q. Let u be the node where the exploration of the 

current face F started
p counts the nodes closer to t than u

q counts the nodes not closer to t than u

Fall back to greedy routing as soon as p > ¢ q (constant > 0)

Theorem: GOAFR is still asymptotically worst-

and it is efficient in practice, in the average-case. 

Usually nodes placed uniformly at random
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Average Case

Not interesting when graph not dense enough

Not interesting when graph is too dense

Critical density range
Shortest path is significantly longer than Euclidean distance

too sparse too densecritical density
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Shortest path is significantly longer than Euclidean distance

Critical density range mandatory for the simulation of any routing 

algorithm (not only geographic)

Critical Density: Shortest Path vs. Euclidean Distance
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Randomly Generated Graphs: Critical Density Range
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Simulation on Randomly Generated Graphs

AFR

GOAFR+

Greedy success
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A Word on Performance

What does a performance of 3.3 in the critical density range mean?

If an optimal path (found by Dijkstra) has cost c, 
then GOAFR+ finds the destination in 3.3¢c steps.

It does not mean that the path found is 3.3 times as long as the 

Remarks about cost metrics 

There are other results, for instance on distance/energy/hybrid metrics

In particular: With energy metric there is no competitive geometric 

routing algorithm



Energy Metric Lower Bound

any deterministic (randomized)

geometric routing algorithm A has

optimal path has constant cost c*

(covering a constant distance at

almost no cost)

With energy metric there is no competitive geometric routing algorithm
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GOAFR: Summary

ts
Greedy 

Routing

Face 

Routing

Adaptive 

Face Routing

GOAFR+

Average-case efficiency Worst-case optimality

Carol

Bob

?
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3D Geo-Routing

The world is not flat. We can certainly envision networks in 3D, e.g. 

in a large office building. Can we geo-route in three dimensions? 

Are the same techniques possible?

Certainly, if the node density is high enough (and the node 

distribution is kind to us), we can simply use greedy routing. But 

what about those local minima?!?

Is there something like a face in 3D? 

How would you do 3D routing?

The picture on the right is the 3D

equivalent of the 2D lower bound, 

proving that we need at least OPT3 steps.
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Deterministic Routing in 3-Dimensional Networks

We will prove that

There is no deterministic k-local routing algorithm for 3D UDGs

Deterministic: Whenever a node n receives a message from node m, n

determines the next hop as a function f(n,m,s,t,N(n)), where s and t are the 

source and the target nodes and N(n) the neighborhood of n.

k-local: A node only knows its k-hop neighborhood

Proof Outline:

(A) We show that an arbitrary graph G can be translated to a 3D UDG 

(B) Assume for contradiction that there is a k-local algorithm Ak for 3D UDGs, 

(C)We show that there must also be a 1-local algorithm A1 for 3D UDGs

(D) 1

on G and obtain a 1-local routing for arbitrary graphs

(E) We show that there is no such algorithm, disproving the existence of Ak.
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Transforming a general graph to a 3D UDG (1/2)

Main idea: Build the 3D UDG similar to an electronic circuit on three 

layers, and add chains of virtual nodes (the conductors)

1

1

1

2

43

4

3

2

1
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Transforming a general graph to a 3D UDG (2/2) 

Virtual nodes on the middle layer establish the connections

The resulting graph is a 3D UDG

4

3

2

1

1

2

43
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1-local Routing for 3D UDGs

Assume that there is a k-local routing algorithm Ak for 3D UDG

Adapt the transformation s.t. the connecting lines contain at least 2k 

virtual nodes

As a result, Ak cannot see more than 1 hop of the original graph

use, but the algorithm Ak still has to work

Therefore, there must also be a 1-local algorithm A1 for 3D UDG

k

k
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1-local Routing for Arbitrary Graphs

The transformation to the 3D UDG can be determined strictly 

locally from any graph G

The nodes of any graph G can simulate A1 by simulating 

Therefore, A1 can be used to build a 1-local routing algorithm for 

arbitrary graphs

2

1

2

43
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1-local Routing for Arbitrary Graphs is impossible (1/2)

A deterministic routing algorithm can be described as a function 

f(n,m,s,t,N(n)), which returns the next hop

n: current node, m: previous node, s: source, t: target, 

N(n): neighborhood of n

Node n has no means to determine locally which of its neighbors 

has a connection to t n must try all of them before returning to m

Even the position of t or s

The function f must be a cycle over the i+1 neighbors

If not, we miss some neighbors of n, which may connect to t

s t

m

i

1

2n

p fn(p)

m 1

1 2

2 3

i m
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1-local Routing for Arbitrary Graphs is impossible (2/2)

Node 2 and 7 have to decide on one forwarding function

There are 4 combinations possible. For all of them, forwarding fails 

either in the left or the right network

Conclusion 1: 1-local routing algorithms do not exist

Conclusion 2: There is no k-local routing algorithm for 3D UDG

Conclusion 3: There is no k-local routing algorithm for 3D graphs

s t1 2

3 5

7 8

4 6

s t1 2

3 6

7 8

4 5

x f2(x)

1 3

3 4

4 1

x f2(x)

1 4

4 3

3 1

x f7(x)

5 8

8 6

6 5

x f7(x)

5 6

6 8

8 5

xor xor
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Routing with and without position information

Without position information:

Flooding

does not scale

Distance Vector Routing

does not scale

Source Routing 

increased per-packet overhead 

no theoretical results, only simulation

With position information:

Greedy Routing 

may fail

Geometric Routing

It is assumed that each node knows its position
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Obtaining Position Information

Attach GPS to each sensor node

Often undesirable or impossible

GPS receivers clumsy, expensive, and energy-inefficient

Equip only a few designated nodes with a GPS

Anchor (landmark) nodes have GPS

Non-anchors derive their position through communication

(e.g., count number of hops to different anchors)

Anchor density determines 

quality of solution



What about no GPS at all?

In absence of GPS-equipped anchors...

...nodes are clueless about real coordinates.

For many applications, real coordinates are not necessary

Virtual coordinates are sufficient

90 44' 55" East

470 30' 19" North 

90 44' 56" East

470 30' 19" North

90 44' 57" East

470 30' 19" North 

90 44' 58" East

470 30' 19" North 

(0,0)

(1,0)

(1,1)

(2,1)

real coordinates virtual coordinates

vs.
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Given the connectivity information for each node and knowing the 

underlying graph is a UDG find virtual coordinates in the plane 

such that all connectivity requirements are fulfilled, i.e. find a 

realization (embedding) of a UDG:

each edge has length at most 1

between non-neighbored nodes the distance is more than 1

Finding a realization of a UDG from connectivity information only is 

NP-hard... 

[Breu, Kirkpatrick, Comp.Geom.Theory 1998] 

...and also hard to approximate

[Kuhn, Moscibroda, Wattenhofer, DIALM 2004]
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Geometric Routing without Geometry

For many applications, like routing, finding a realization of a UDG is 

not mandatory

Virtual coordinates merely as infrastructure for geometric routing

Pseudo geometric coordinates:

Select some nodes as anchors: a1,a2, ..., ak

Coordinate of each node u is its hop-distance to all anchors: 

(d(u,a1),d(u,a2),..., d(u,ak))

Requirements:

each node uniquely identified: Naming Problem

routing based on (pseudo geometric) coordinates possible: Routing 

Problem

(0) (1) (2) (3) (4)
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Pseudo-geometric routing in the grid: Naming

(4)

(4)

(4)

(4)

(4)

Anchor 1 Anchor 2

(4,4)

(4,2)

(4,6)

(4,8)

(4,10)

Lemma: The naming problem 

in the grid can be solved 

with two anchors.

[R.A. Melter and I. Tomescu, 
Comput. Vision, Graphics. 

Image Process., 1984]:
landmarks in graphs



Pseudo-geometric routing in the grid: Routing

(4,10)

Anchor 1 Anchor 2

(6,4)

(5,11)

(3,9)

(5,9) (6,8)

(5,7)

(7,7)

(6,6)

(5,5)

(6,10)

(4,8)

(7,9)

Rule: pass message 

to neighbor which 

is closest to 

destination

Lemma: The routing problem 

in the grid can be solved 

with two anchors.
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Problem: UDG is usually not a grid

k

Recursive construction 

of a unit dist tree (UDT) 

which needs (n) anchors 

Pseudo-geometric routing in the UDT: Naming

Leaf-siblings can only be distinguished if one of them is an anchor:

(a,b,c,...)

(a+1,b+1,c+1,...)(a+1,b+1,c+1,...)

Anchor k+1

Anchor 1..Anchor k

Lemma: in a unit disk tree with n nodes 

there are up to (n) leaf-siblings. 

That is, we need to (n) anchors.
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Pseudo-geometric routing in the ad hoc networks

Naming and routing in grid quite good, in previous UDT example 

very bad

Real-world ad hoc networks are very probable neither perfect grids 

nor naughty unit disk trees

Truth is somewhere in 

between...
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Summary of Results

If position information is available geo-routing is a feasible option.

Face routing guarantees to deliver the message.

By restricting the search area the efficiency is OPT2.

Because of a lower bound this is asymptotically optimal.

Combining greedy and face gives efficient algorithm.

3D geo-routing is impossible.

Even if there is no position information, some ideas might be helpful.

Geo-routing is probably the only class of routing that is well 

understood.

There are many adjacent areas: topology control, location 

services, routing in general, etc. 
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Open problem

One of the most-understood topics. In that sense it is hard to come 

-washy.

For a 2D UDG the efficiency of geo-routing can be quadratic to an 

optimal algorithm (with routing tables). However, the worst-case 

example is quite special. Open problem: How much information 

does one need to store in the network to guarantee only constant 

overhead?

Variant: Instead of UDG some more realistic model

How can one maintain this information if the network is dynamic?


