

Area maturity First steps Text book Practical importance Mission critical Theoretical importance Not really Must have

Overview

- Motivation
- Clock Sources
- Reference-Broadcast Synchronization (RBS)
- Time-sync Protocol for Sensor Networks (TPSN)
- Gradient Clock Synchronization

Motivation

Rating

- · Time synchronization is essential for many applications
 - Coordination of wake-up and sleeping times (energy efficiency)
 - TDMA schedules
 - Ordering of collected sensor data/events
 - Co-operation of multiple sensor nodes
 - Estimation of position information (e.g. shooter detection)
- Goals of clock synchronization
 - Compensate offset between clocks
 - Compensate drift between clocks

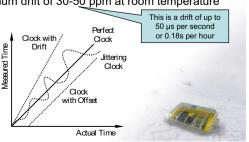
Properties of Synchronization Algorithms

- External versus internal synchronization
 - External sync: Nodes synchronize with an external clock source (UTC)
 - Internal sync: Nodes synchronize to a common time
 - to a leader, to an averaged time, or to anything else
- · Instant versus periodic synchronization
 - Periodic synchronization required to compensate clock drift
- · A-priori versus a-posteriori
 - A-posteriori clock synchronization triggered by an event
- Local versus global synchronization

Ad Hoc and Sensor Networks – Roger Wattenhofer – 9/5

Clock Devices in Sensor Nodes

- Structure
 - External oscillator with a nominal frequency (e.g. 32 kHz)
 - Counter register which is incremented with oscillator pulses
 - Works also when CPU is in sleep state
- Accuracy
 - Clock drift: random deviation from the nominal rate dependent on power supply, temperature, etc.
 - E.g. TinyNodes have a maximum drift of 30-50 ppm at room temperature



Ad Hoc and Sensor Networks - Roger Wattenhofer - 9/7

Clock Sources

- Radio Clock Signal:
 - Clock signal from a reference source (atomic clock) is transmitted over a longwave radio signal
 - DCF77 station near Frankfurt, Germany transmits at 77.5 kHz with a transmission range of up to 2000 km
 - Accuracy limited by the distance to the sender, Frankfurt-Zurich is about 1ms.
 - Special antenna/receiver hardware required
- Global Positioning System (GPS):
 - Satellites continuously transmit own position and time code
 - Line of sight between satellite and receiver required
 - Special antenna/receiver hardware required

Sender/Receiver Synchronization

• Round-Trip Time (RTT) based synchronization

- · Receiver synchronizes to the sender's clock
- Propagation delay δ and clock offset θ can be calculated

$$\delta = \frac{(t_4 - t_1) - (t_3 - t_2)}{2}$$

$$\theta = \frac{(t_2 - (t_1 + \delta)) - (t_4 - (t_3 + \delta))}{2} = \frac{(t_2 - t_1) + (t_3 - t_4)}{2}$$

Ad Hoc and Sensor Networks – Roger Wattenhofer – 9/8

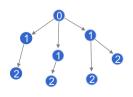
Disturbing Influences on Packet Latency

Influences	
 Sending Time S 	(up to 100ms)
– Medium Access Time A	(up to 500ms)
 Transmission Time T 	(tens of milliseconds, depending on size)
 Propagation Time P_{A,B} 	(microseconds, depending on distance)
– Reception Time R	(up to 100ms)
-	
Ĩ.	
S A	
Timestamp T_A	
•	Critical path

- Asymmetric packet delays due to non-determinism
- Solution: timestamp packets at MAC Layer

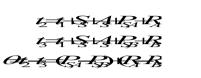
Time-sync Protocol for Sensor Networks (TPSN)

- Traditional sender-receiver synchronization (RTT-based)
- Initialization phase: Breadth-first-search flooding
 - Root node at level 0 sends out a level discovery packet
 - Receiving nodes which have not yet an assigned level set their level to +1 and start a random timer
 - After the timer is expired, a new level discovery packet will be sent
 - When a new node is deployed, it sends out a level request packet after a random timeout



Reference-Broadcast Synchronization (RBS)

- A sender synchronizes a set of receivers with one another
- Point of reference: beacon's arrival time

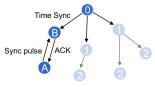


- Only sensitive to the difference in propagation and reception time
- Time stamping at the interrupt time when a beacon is received
- After a beacon is sent, all receivers exchange their reception times to calculate their clock offset
- Post-synchronization possible
- · Least-square linear regression to tackle clock drifts

Ad Hoc and Sensor Networks - Roger Wattenhofer -

Time-sync Protocol for Sensor Networks (TPSN)

- Synchronization phase
 - Root node issues a *time sync* packet which triggers a random timer at all level 1 nodes
 - After the timer is expired, the node asks its parent for synchronization using a synchronization pulse
 - The parent node answers with an acknowledgement
 - Thus, the requesting node knows the round trip time and can calculate its clock offset
 - Child nodes receiving a synchronization pulse also start a random timer themselves to trigger their own synchronization



Ad Hoc and Sensor Networks – Roger Wattenhofer –

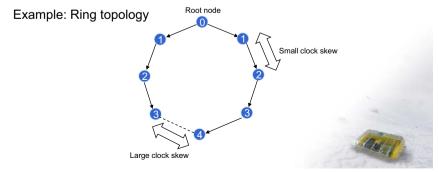
Time-sync Protocol for Sensor Networks (TPSN)

- · Time stamping packets at the MAC layer
- In contrast to RBS, the signal propagation time might be negligible
- · Authors claim that it is "about two times" better than RBS
- Again, clock drifts are taken into account using periodical synchronization messages
- Problem: What happens in a non-tree topology (e.g. ring)?!?
 Two neighbors may have exceptionally bad synchronization

Ad Hoc and Sensor Networks - Roger Wattenhofer - 9/13

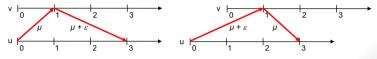
Gradient Clock Synchronization

- 1. Global property: Minimize clock skew between any two nodes
- 2. Local (gradient) property: Small clock skew between two nodes if the distance between the nodes is small.
- 3. Clock should not be allowed to jump backwards
 - You don't want new events to be registered earlier than older events.



Theoretical Bounds for Clock Synchronization

- Network Model:
 - Each node *i* has a local clock L_i(t)
 - Network with *n* nodes, diameter *D*.
 - Reliable point-to-point communication with minimal delay µ
 - Jitter ɛ is the uncertainty in message delay
- Two neighboring nodes u, v cannot distinguish whether message is faster from u to v and slower from v to u, or vice versa. Hence clocks of neighboring nodes can be up to ε off.



- Hence, two nodes at distance D may have clocks which are εD off.
- This can be achieved by a simple flooding algorithm: Whenever a node receives a new minimum value, it sets its clock to the new value and forwards its new clock value to all its neighbors.

Ad Hoc and Sensor Networks – Roger Wattenhofer – 9/14

Trivial Solution: Let t = 0 at all nodes and times

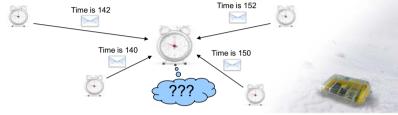
- 1. Global property: Minimize clock skew between any two nodes 💆
- 2. Local (gradient) property: Small clock skew between two nodes if the distance between the nodes is small.
- 3. Clock should not be allowed to jump backwards
- · To prevent trivial solution, we need a fourth constraint:

4. Clock should always to move forward.

- Sometimes faster, sometimes slower is OK.
- But there should be a minimum and a maximum speed.

Gradient Clock Synchronization

- Model
 - Each node has a hardware clock $H_i(\cdot)$ with a clock rate $h_i(t) \in [L, U]$ where 0 < L < U and $U \ge 1$
 - The time of node *i* at time *t* is $H_i(t) = \int h_i(t) dt$
 - Each node has a logical clock $L_i(\cdot)$ which increases at the rate of $H_i(\cdot)$
 - Employ a synchronization algorithm *A* to update the local clock with fresh clock values from neighboring nodes (clock cannot run backwards)
 - Nodes inform their neighboring nodes when local clock is updated



Ad Hoc and Sensor Networks – Roger Wattenhofer – 9/17

Synchronization Algorithms: A^{max'}

- The problem of *A*^{max} is that the clock is always increased to the maximum value
- Idea: Allow a constant slack *γ* between the maximum neighbor clock value and the own clock value
- The algorithm $A^{max'}$ sets the local clock value $L_i(t)$ to

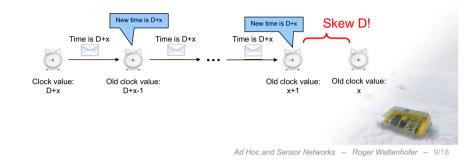
 $L_i(t) := \max(L_i(t), \max_{j \in N_i} L_j(t) - \gamma)$

 \rightarrow Worst-case clock skew between two neighboring nodes is still $\Theta(D)$ independent of the choice of $\gamma!$

- How can we do better?
 - Idea: Take the clock of all neighbors into account by choosing the average value

Synchronization Algorithms: A^{max}

- Question: How to update the local clock based on the messages from the neighbors?
- Idea: Minimizing the skew to the fastest neighbor
 - Set the clock to the maximum clock value received from any neighbor (if greater than local clock value)
- Poor gradient algorithm: Fast propagation of the largest clock value could lead to a large skew between two neighboring nodes

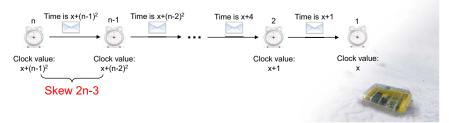


Synchronization Algorithms: Aavg

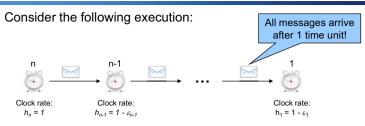
 A^{avg} sets the local clock to the average value of all neighbors:

$$L_i(t) := \max(L_i(t), \frac{1}{|N_i|} \sum_{j \in N_i} L_j(t))$$

- Surprisingly, this algorithm is even worse!
- We will now proof that in a very natural execution of this algorithm, the clock skew becomes large!



Synchronization Algorithms: Aavg



- All ϵ_i for $i \in \{1, ..., n-1\}$ are arbitrary values in the range (0, 1)
- → The clock rates can be viewed as *relative* rates compared to the fastest node n!

Theorem: In the given execution, the largest skew between neighbors is $2n-3 \in O(D)$.

Ad Hoc and Sensor Networks – Roger Wattenhofer – 9/21

Au noc and Sensor Networks - Roger Wattenholer - 5

Synchronization Algorithms: Aavg

Assume that it holds for all $t' \leq t$. For t+1 we have that

$$L_{i}(t+1) \geq \frac{L_{i+1}(t) + L_{i-1}(t)}{2}$$

$$\geq \frac{L_{i+1}(t) + L_{i}(t) - (2i-3)}{2}$$

$$\geq \frac{L_{i+1}(t) + L_{i}(t+1) - 1 - (2i-3)}{2}$$

$$\geq L_{i+1}(t+1) - (2(i+1)-3).$$

- The first inequality holds because the logical clock value is always at least the average value of its neighbors.
- The second inequality follows by induction.
- The third and fourth inequalities hold because $\Delta L_i(t) \leq 1$.

Synchronization Algorithms: Aavg

We first prove two lemmas:

Lemma 1: In this execution it holds that $\forall t \forall i \in \{2,...,n\}$: $L_i(t) - L_{i-1}(t) \le 2i - 3$, independent of the choices of $\varepsilon_i > 0$.

Proof:

 $\begin{array}{l} \text{Define } \Delta L_i(t) \coloneqq L_i(t) - L_i(t\text{-}1). \text{ It holds that } \forall \ t \ \forall \ i: \ \Delta L_i(t) \leq 1. \\ L_1(t) \equiv L_2(t\text{-}1) \text{ as node } 1 \text{ has only one neighbor (node 2)}. \\ \text{Since } \Delta L_2(t) \leq 1 \text{ for all } t, \text{ we know that } L_2(t) - L_1(t) \leq 1 \text{ for all } t. \end{array}$

Assume now that it holds for $\forall t \forall j \le i$: $L_j(t) - L_{j-1}(t) \le 2j - 3$. We prove a bound on the skew between node i and i+1: For t = 0 it is trivially true that $L_{i+1}(t) - L_i(t) \le 2(i+1) - 3$.

Ad Hoc and Sensor Networks - Roger Wattenhofer - 9/22

Synchronization Algorithms: Aavg

Lemma 2: $\forall i \in \{1, \dots, n\}$: $\lim_{t \to \infty} \Delta L_i(t) = 1$.

Proof:

Assume $\Delta L_{n-1}(t)$ does not converge to 1. Case (1): $\exists \epsilon > 0$ such that $\forall t: \Delta L_{n-1}(t) \le 1 - \epsilon$. As $\Delta L_n(t)$ is always 1, if there is such an ϵ , then $\lim_{t \to \infty} L_n(t) - L_{n-1}(t) = \infty$, a contradiction to Lemma 1. Case (2): $\Delta L_{n-1}(t) = 1$ only for some t, then there is an unbounded number of times t' where $\Delta L_{n-1}(t) < 1$, which also implies that $\lim_{t \to \infty} L_n(t) - L_{n-1}(t) = \infty$, again contradicting Lemma 1. Hence, $\lim_{t \to \infty} \Delta L_{n-1}(t) = 1$. Applying the same argument to the other nodes, it follows inductively that $\forall i \in \{1, ..., n\}$: $\lim_{t \to \infty} \Delta L_i(t) = 1$.

Synchronization Algorithms: Aavg

Theorem: In the given execution, the largest skew between neighbors is 2n-3.

Proof:

We show that $\forall i \in \{2,...,n\}$: $\lim_{t \to \infty} L_i(t) - L_{i-1}(t) = 2i - 3$. Since $L_1(t) = L_2(t-1)$, it holds that $\lim_{t \to \infty} L_2(t) - L_1(t) = \Delta L_1(t) = 1$, according to Lemma 2. Assume that $\forall j \leq i$: $\lim_{t \to \infty} L_j(t) - L_{j-1}(t) = 2j - 3$. According to Lemma 1 & 2, $\lim_{t \to \infty} L_{j+1}(t) - L_i(t) = Q$ for a value $Q \leq 2(i+1) - 3$. If (for the sake of contradiction) Q < 2(i+1) - 3, then

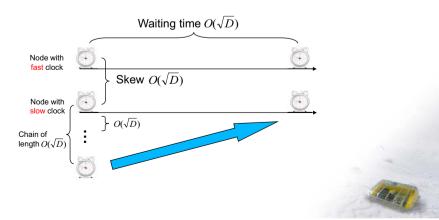
$$\lim_{t \to \infty} L_i(t) = \lim_{t \to \infty} \frac{L_{i-1}(t-1) + L_{i+1}(t-1)}{2}$$
$$= \lim_{t \to \infty} \frac{2L_i(t-1) - (2i-3) + Q}{2}$$

and thus $\lim_{t \to \infty} \Delta L_i(t) < 1$, a contradiction to Lemma 2.

Ad Hoc and Sensor Networks – Roger Wattenhofer – 9/25

Synchronization Algorithms: Aroot

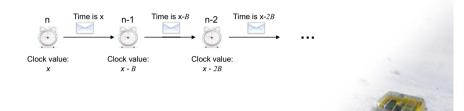
- · How long should we wait for a slower node to catch up?
 - − Do it smarter: Set $B = O(\sqrt{D})$ → skew is allowed to be $O(\sqrt{D})$ → waiting time is at most $O(D/B) = O(\sqrt{D})$ as well



Ad Hoc and Sensor Networks – Roger Wattenhofer – 9/27

Synchronization Algorithms: Abound

- Idea: Minimize the skew to the slowest neighbor
 - Update the local clock to the maximum value of all neighbors as long as no neighboring node's clock is more than *B* behind.
- · Gives the slowest node time to catch up
- Problem: Chain of dependency
 - Node *n*-1 waits for node *n*-2, node *n*-2 waits for node *n*-3, …
 → Chain of length Θ(n) = Θ(D) results in Θ(D) waiting time
 → Θ(D) skew!



Ad Hoc and Sensor Networks - Roger Wattenhofer - 9/26

Synchronization Algorithms: Aroot

· When a message is received, execute the following steps:

 $\begin{array}{l} \textit{max} := \text{Maximum clock value of all neighboring nodes} \\ \textit{min} := \text{Minimum clock value of all neighboring nodes} \\ \text{if } (\textit{max} > \text{own clock and } \textit{min} + U\sqrt{D+1} > \text{own clock} \\ \text{own clock} := \min(\textit{max}, \textit{min} + U\sqrt{D+1}) \\ \text{inform all neighboring nodes about new clock value} \\ \text{end if} \end{array}$

- This algorithm guarantees that the worst-case clock skew between neighbors is bounded by $O(\sqrt{D})$.
- In [Fan and Lynch, PODC 2004] it is shown that when logical clocks need to obey minimum/maximum speed rules, the skew of two neighboring clocks can be up to Ω(log *D* / log log *D*).

Open Problem

- The obvious open problem is about gradient clock synchronization.
- Nodes in an arbitrary graph are equipped with an unmodifiable hardware clock and a modifiable logical clock. The logical clock must make progress roughly at the rate of the hardware clock, i.e., the clock rates may differ by a small constant. Messages sent over the edges of the graph have delivery times in the range [0, 1].
 Given a bounded, variable drift on the hardware clocks, design a message-passing algorithm that ensures that the logical clock skew of adjacent nodes is as small as possible at all times.
- Indeed, there is a huge gap between upper bound of √D and lower bound of log D / log log D.

Ad Hoc and Sensor Networks – Roger Wattenhofer – 9/29