Time Synchronization

Chapter 9

@ \‘.‘.*
D &4

Eidgendssische Technische Hochschule Zirich

Swiss Federal Instiute of Technology Zurich Ad Hoc and Sensor Networks — Roger Wattenhofer — 9/1

Rating

* Area maturity

First steps Text book

» Practical importance

No apps Mission critical

* Theoretical importance

Not really Must have

0‘

Ad Hoc and Sensor Networks — Roger Wattenhofer — 9/2

Overview

* Motivation

» Clock Sources

» Reference-Broadcast Synchronization (RBS)

+ Time-sync Protocol for Sensor Networks (TPSN)
» Gradient Clock Synchronization

w7y,

Ad Hoc and Sensor Networks — Roger Wattenhofer — 9/3

Motivation

» Time synchronization is essential for many applications
— Coordination of wake-up and sleeping times (energy efficiency)
— TDMA schedules
— Ordering of collected sensor data/events
— Co-operation of multiple sensor nodes
— Estimation of position information (e.g. shooter detection)

» Goals of clock synchronization
— Compensate offset between clocks
— Compensate drift between clocks

s

Ad Hoc and Sensor Networks — Roger Wattenhofer — 9/4

Properties of Synchronization Algorithms

« External versus internal synchronization
— External sync: Nodes synchronize with an external clock source (UTC)
— Internal sync: Nodes synchronize to a common time
— to aleader, to an averaged time, or to anything else

* Instant versus periodic synchronization
— Periodic synchronization required to compensate clock drift

* A-priori versus a-posteriori
— A-posteriori clock synchronization triggered by an event

* Local versus global synchronization

Clock Sources

+ Radio Clock Signal:

— Clock signal from a reference source (atomic clock) ’
is transmitted over a longwave radio signal

— DCF77 station near Frankfurt, Germany transmits at
77.5 kHz with a transmission range of up to 2000 km

— Accuracy limited by the distance to the sender,
Frankfurt-Zurich is about 1ms.

— Special antenna/receiver hardware required

* Global Positioning System (GPS):

— Satellites continuously transmit own position and
time code

— Line of sight between satellite and receiver required
— Special antenna/receiver hardware required

Clock Devices in Sensor Nodes

Sender/Receiver Synchronization

» Structure
— External oscillator with a nominal frequency (e.g. 32 kHz)
— Counter register which is incremented with oscillator pulses
— Works also when CPU is in sleep state
* Accuracy
— Clock drift: random deviation from the nominal rate dependent on power
supply, temperature, etc.
— E.g. TinyNodes have a maximum drift of 30-50 ppm at room temperature

This is a drift of up to
50 ps per second
or 0.18s per hour

Measured Time

Oscillator] Actud Time Q

* Round-Trip Time (RTT) based synchronization

e
S ki 2

F=xps / \m
A t1.— Fexms | l;

* Receiver synchronizes to the sender’s clock
+ Propagation delay ¢ and clock offset 6 can be calculated
s=lta=t)=(=t)
2
0= (tz _(tl +§))_(t4 _(ts +9)) _ (tz _t1)+(t3 _t4)
2 2

Disturbing Influences on Packet Latency

Reference-Broadcast Synchronization (RBS)

* Influences
— Sending Time S (up to 100ms)
Medium Access Time A (up to 500ms)
Transmission Time T (tens of milliseconds, depending on size)
(
(

Propagation Time P, g microseconds, depending on distance)
Reception Time R up to 100ms)

QEsETTATT T

Timestamp T, \ \

oo I O

Timestamp Tg

Critical path

+ Asymmetric packet delays due to non-determinism
» Solution: timestamp packets at MAC Layer

+ Asender synchronizes a set of receivers with one another
* Point of reference: beacon’s arrival time

LA K S
LAy R
s £~ ETER

+ Only sensitive to the difference in propagation and reception time

« Time stamping at the interrupt time when a beacon is received

* After a beacon is sent, all receivers exchange their reception times to
calculate their clock offset

* Post-synchronization possible
+ Least-square linear regression to tackle clock drifts

Time-sync Protocol for Sensor Networks (TPSN)

Time-sync Protocol for Sensor Networks (TPSN)

+ Traditional sender-receiver synchronization (RTT-based)
 Initialization phase: Breadth-first-search flooding
— Root node at level 0 sends out a level discovery packet

— Receiving nodes which have not yet an assigned level set their level
to +1 and start a random timer

— After the timer is expired, a new level discovery packet will be sent

— When a new node is deployed, it sends out a level request packet after
a random timeout

A
Sl

» Synchronization phase

— Root node issues a time sync packet which triggers a random timer at
all level 1 nodes

— After the timer is expired, the node asks its parent for synchronization
using a synchronization pulse

— The parent node answers with an acknowledgement

— Thus, the requesting node knows the round trip time and can calculate
its clock offset

— Child nodes receiving a synchronization pulse also start a random timer
themselves to trigger their own synchronization

Time Sync ?\

B
e | ™

Time-sync Protocol for Sensor Networks (TPSN)

e R 3 73

LB S AGT IR e | N
ST DABLEIDEEE | Ik ! l
(AN

+ Time stamping packets at the MAC layer
* In contrast to RBS, the signal propagation time might be negligible
+ Authors claim that it is “about two times” better than RBS

* Again, clock drifts are taken into account using periodical
synchronization messages

+ Problem: What happens in a non-tree topology (e.g. ring)?!?
— Two neighbors may have exceptionally bad synchronization @

Theoretical Bounds for Clock Synchronization

* Network Model:
— Each node i has a local clock L(t)
Network with n nodes, diameter D.
— Reliable point-to-point communication with minimal delay y
Jitter ¢ is the uncertainty in message delay

+ Two neighboring nodes u, v cannot distinguish whether message is faster
from u to v and slower from v to u, or vice versa. Hence clocks of
neighboring nodes can be up to ¢ off.

* Hence, two nodes at distance D may have clocks which are eD off.

» This can be achieved by a simple flooding algorithm: Whenever a node
receives a new minimum value, it sets its clock to the new value and ...,

forwards its new clock value to all its neighbors. @

Gradient Clock Synchronization

1. Global property: Minimize clock skew between any two nodes

2. Local (gradient) property: Small clock skew between two nodes if
the distance between the nodes is small.

3. Clock should not be allowed to jump backwards
= You don’t want new events to be registered earlier than older events.

Root node

g
@
/

N ©
0 _—

Large clock skew &

Example: Ring topology

@/o
\(‘) .

Trivial Solution: Let t = 0 at all nodes and times

1. Global property: Minimize clock skew between any two nodes &

2. Local (gradient) property: Small clock skew between two nodes if &
the distance between the nodes is small.

3. Clock should not be allowed to jump backwards &
» To prevent trivial solution, we need a fourth constraint:
4. Clock should always to move forward.

* Sometimes faster, sometimes slower is OK.
» But there should be a minimum and a maximum speed.

Gradient Clock Synchronization

* Model

— Each node has a hardware clock H,(-) with a clock rate hi(¢) € [L,U]
where 0 <L <Uand Uz1

— The time of node i at time tis Hi(t) = Ihi(t)dt
0

— Each node has a logical clock L;(-) which increases at the rate of Hy(-)

— Employ a synchronization algorithm A4 to update the local clock with
fresh clock values from neighboring nodes (clock cannot run

backwards)
— Nodes inform their neighboring nodes when local clock is updated
Time is 142 Time is 152
Time is 140 fie

Time is 150

Synchronization Algorithms: 4max

* Question: How to update the local clock based on the messages
from the neighbors?

+ Idea: Minimizing the skew to the fastest neighbor

— Set the clock to the maximum clock value received from any neighbor
(if greater than local clock value)

» Poor gradient algorithm: Fast propagation of the largest clock value
could lead to a large skew between two neighboring nodes

ey il 5 Bk New time is D+x S keW D '
Time is D+x Time is D+x Time is D+x —r

Clock value: Old clock value: Old clock value: Old clock value:

D+x D+x-1 x+1 X

Synchronization Algorithms: 4max’

+ The problem of 47 is that the clock is always increased to the
maximum value

» Idea: Allow a constant slack y between the maximum neighbor clock
value and the own clock value

« The algorithm A" sets the local clock value L) to
Li(t) := max(Li(t),max ;_, Li(t)—y)

— Worst-case clock skew between two neighboring nodes is still
©(D) independent of the choice of y!

* How can we do better?
— Idea: Take the clock of all neighbors into account by choosing the

average value
.

Synchronization Algorithms: 4«2

+ A<z sets the local clock to the average value of all neighbors:

L

1

Li(t) = max(Li(t),— >_Li(?))

JENi

» Surprisingly, this algorithm is even worse!

+ We will now proof that in a very natural execution of this algorithm,
the clock skew becomes large!

n Time is x+(n-1)2 nq Timeis x+(n-2)2 Time is x+4 2 Time is x+1 1
Clock value: Clock value: Clock value: Clock value:
x+(n-1)2 Xx+(n-2)2 x+1 X
—

Skew 2n-3 Q
./

Synchronization Algorithms: 4«2

Consider the following execution:

All messages arrive
after 1 time unit!

_—
Clock rate: Clock rate: Clock rate:

hy=1 [V hy=1-¢g

All g fori € {1,...,n-1} are arbitrary values in the range (0,1)

- The clock rates can be viewed as relative rates compared to the
fastest node n!

Theorem: In the given execution, the largest
skew between neighbors is 2n-3 € O(D).

-

Synchronization Algorithms: 4«2

We first prove two lemmas:

Lemma 1: In this execution it holds that Vt Vi € {2,...,n}:
L,(t) —L;4(t) = 2i — 3, independent of the choices of ¢; > 0.

Proof:

Define AL(t) := Lj(t) — L(t-1). It holds that V t V i: AL(t) < 1.
L4(t) = Ly(t-1) as node 1 has only one neighbor (node 2).
Since AL,(t) = 1 for all t, we know that L,(t) — L,(t) < 1 for all t.

Assume now that it holds for vVt v j < i: Lj(t) —L; 4(t) < 2j - 3.
We prove a bound on the skew between node i and i+1:
For t = 0 itis trivially true that L,,4(t) — L;(t) < 2(i+1) - 3.

-

Synchronization Algorithms: 4«2

Assume that it holds for all t’ < t. For t+1 we have that

Liy1(t) + L;—1(t)

Li(t+1) > 5
> Lip1(®) + Li(t) — (26 — 3)
- 2
s Lita@® +Li(t+1) -1 (2 —3)
- 2
> Liy1(t+1) - (2 +1) - 3).

» The first inequality holds because the logical clock value is always
at least the average value of its neighbors.

* The second inequality follows by induction.

+ The third and fourth inequalities hold because AL(t) < 1.

Synchronization Algorithms: 4«2

Lemma2:Viec {1,...,n}: lim,_, ALi(t) =1.

Proof:

Assume AL, _4(t) does not converge to 1.

Case (1):

Je>0suchthatvVt AL ()< 1 -¢.

As AL (t) is always 1, if there is such an ¢, then

lim, _, o L,(t) - L,.4(t) = 00, a contradiction to Lemma 1.

Case (2):

AL, 4(t) = 1 only for some t, then there is an unbounded number of
times t’ where AL, _4(t) < 1, which also implies that

lim, _, . Ln(t) - L,.4(t) = 00, again contradicting Lemma 1.

Hence, lim,_, AL, 4(t) = 1. Applying the same argument to the other

nodes, it follows inductively that Vi € {1,...,n}: lim, _, AL(t) = il!

Synchronization Algorithms: 4«2

Theorem: In the given execution, the largest skew between neighbors
is 2n-3.

Proof:

We show that Vi € {2,...,n}: lim, _, . Lj(t) — Li4(t) = 2i — 3.

Since L4(t) = Ly(t-1), it holds that lim, _, ., L,(t) — L4(t) = AL,(t) = 1,
according to Lemma 2.

Assume that Vj <i: lim, _, Li(t) — Li4(t) = 2j - 3.

According to Lemma 1 & 2, lim, _, Li.4(t) — Li(t) = Q for a value

Q =< 2(i+1) — 3. If (for the sake of contradiction) Q < 2(i+1) — 3, then

Li 1(t—1)+Li41(t —1)

lim L;(t) = Ilim
t—o00 t—o0 2
2Lt -1)—-(2i—-3)+Q
= lim
t—oo 2

and thus lim, _, ., AL(t) <1, a contradiction to Lemma 2.

Synchronization Algorithms: 4oud

* Idea: Minimize the skew to the slowest neighbor

— Update the local clock to the maximum value of all neighbors as long as
no neighboring node’s clock is more than B behind.

* Gives the slowest node time to catch up
* Problem: Chain of dependency

— Node n-1 waits for node n-2, node n-2 waits for node n-3, ...
- Chain of length ©(n) = ©(D) results in ©(D) waiting time

- O(D) skew!
n Time is x n-1 Time is x-B n-2 Time is x-2B
Clock value: Clock value: Clock value:
X X-B X-2B

Synchronization Algorithms: A4

* How long should we wait for a slower node to catch up?

— Do it smarter: Set B=0(-/D) — skew is allowed to be O(/D)
— waiting time is at most O(D/ B) = O(\/B) as well

Waiting time O(vD)
A

Node with 5)

fast clock
JL Skew O(/D)

Node with
slow clock

} oWy
Chain of
length O(v/D)

Synchronization Algorithms: 4!

« When a message is received, execute the following steps:

max := Maximum clock value of all neighboring nodes
min := Minimum clock value of all neighboring nodes

if (max > own clock and min + U~'D+1> own clock
own clock := min(max, min + U\/D+1)
inform all neighboring nodes about new clock value

end if

+ This algorithm guarantees that the worst-case clock skew between
neighbors is bounded by O(/D).

* In[Fan and Lynch, PODC 2004] it is shown that when logical clocks
need to obey minimum/maximum speed rules, the skew of two
neighboring clocks can be up to Q(log D/ log log D).

Open Problem

» The obvious open problem is about gradient clock synchronization.

* Nodes in an arbitrary graph are equipped with an unmodifiable
hardware clock and a modifiable logical clock. The logical clock
must make progress roughly at the rate of the hardware clock, i.e.,
the clock rates may differ by a small constant. Messages sent over
the edges of the graph have delivery times in the range [0, 1].
Given a bounded, variable drift on the hardware clocks, design a
message-passing algorithm that ensures that the logical clock skew
of adjacent nodes is as small as possible at all times.

+ Indeed, there is a huge gap between upper bound of YD and lower

bound of log D / log log D.

