
Discrete Event Systems
Roger Wattenhofer

5 Worst-Case Event Systems

In many application domains events arenot Poisson distributed. For some applications it even makes
sense to (more or less) assume that events are distributed in the worst possible way (e.g. in networks,
packets often arrive in bursts). In this Section we study systems from a worst-case perspective. In
particular, we analyze the price of not being able to foresee the future. This is a phenomenon that
often occurs in discrete event systems (such as the Internet), but also in our daily life. This area of
research is often referred to asOnline Algorithms.

5.1 Ski Rental

We start out with a seasonal “toy example,” ski rental. Imagine that you want to start a new hobby
(e.g. skiing, skateboarding, having a boy- or girlfriend), but you don’t yet know whether you will like
it. The equipment is expensive, therefore you decide to first rent it a few times, before you buy (or get
married!). When dealing with this problem, we (informally speaking) assume that Murphy’s law will
strike: as soon as you buy, you will lose interest in the subject. Arguments like “I rented skis 17 times,
and like it so much that I will go skiing for at least 1717 more times” do not count in Murphy’s world.
Instead, once you buy skis you can be sure to meet new friends, and they think that skiing is for losers,
and snowboarding or whatever is the new hip thing.

We first radically simplify the problem (to make it mathematically more elegant and tractable):

Definition 5.1 (Ski Rental) The ski rental problem consists of two values:

• Input: a real numberu, representing the time a skier will end up skiing (u ≥ 0), chosen by
an adversary.

• Algorithm: a real numberz, at which the algorithm will stop renting skis, and instead buys
skis for price 1.

Remarks:

• The algorithm does not know the inputu.

• The algorithm is represented by a single value. This is rather unusual.

The cost of the algorithm with valuez on inputu is costz(u):

costz(u) =

{
u if u ≤ z

z + 1 if u > z

The goal is to develop an algorithmz that is good foranyinputu. We compare the cost of the algorithm
with the cost of an optimal clairvoyant (“offline”) algorithm:

1



costopt(u) =

{
u if u ≤ 1
1 if u > 1

}
= min(u, 1).

Definition 5.2 (Competitive Analysis) An online algorithmA is c-competitive if for all finite input
sequencesI

costA(I) ≤ c · costopt(I) + k,

wherecost is the cost function of the algorithmA and the optimal offline algorithm, respectively,
andk is a constant independent of the input. Ifk = 0, then the online algorithm is calledstrictly
c-competitive.

Theorem 5.3 Ski rental is strictly 2-competitive. The best algorithm isz = 1.

Proof. When looking at strictly competitive ski rental algorithms, we can equivalently ask for

costz(u)

costopt(u)
≤ c

Let us investigatez = 1 in the ski rental algorithm. Then,

costz(u)

costopt(u)
=

Cases u ≤ z = 1 u > z = 1

u ≤ 1 u
u

impossible
u > 1 impossible 1+1

1

Thus, the worst case isu > z = 1, and the competitive ratio is2.

Is this optimal?

• Let’s try z > 1: In this case the adversary might/will chooseu = z + ε. Then, the cost ratio is

costz(u)

costopt(u)
=

z + 1

1
> 2.

• If z < 1 then the adversary will chooseu betweenz and 1, closer toz, for exampleu =
(9z + 1)/10. Then

costz(u)

costopt(u)
=

z + 1

u
=

z

u
+

1

u
> 2.

uu

Remark:

• Everything solved?!? It seems that the algorithm has a big handicap. We assume that the ad-
versary knows every bit about the algorithm (similar to the models used in cryptography). The
adversary can always present an input which is worst-case for the algorithm. The only hope for
the algorithm is to makerandomdecisions, and thus make the game harder for the adversary.

2



5.2 Randomized Ski Rental

Let’s look at an algorithmA that chooses randomly between two values,z1 andz2 (with z1 < z2), with
probabilitiesp1 andp2 = 1− p1. Then,

costA(u) =





u if u ≤ z1

p1 · (z1 + 1) + p2 · u if z1 < u ≤ z2

p1 · (z1 + 1) + p2 · (z2 + 1) if z2 < u

The adversary, being very evil, will still choose the worst possible inputs. Convince yourself that only
u1 = z1 + ε andu2 = z2 + ε are sensible. Since the adversary does not see the random coin flip of
the algorithm, it as well has to choose its inputs randomly, with probabilitiesq1 andq2, respectively.
The situation is equivalent to game theory – if you’re ambitious you might want to compute the Nash
equilibrium for this game...
For the sake of simplicity, we will assign the algorithm the values

z1 = 1/2, z2 = 1, p1 = 2/5, p2 = 3/5.

We havecostA =

costA p1 p2

q1 z1 + 1 u1

q2 z1 + 1 z2 + 1

In short,
costA = p1(z1 + 1) + p2(q1u1 + q2(z2 + 1)).

Using the values from above,

costA =
3

5
+

3

5
(q1/2 + 2q2) =

9

5
(1− q1/2).

And, costopt =

costopt p1 p2

q1 u1 u1

q2 u2 u2

Hence,
costopt = q1 · 1/2 + q2 · 1 = 1− q1/2.

Therefore,
costA
costopt

=
9

5
.

In other words, for this particular randomized algorithm, the expected competitive ratio is1.8 only,
below the best possible deterministic algorithm. Mind, however, that this new bound is in expectation
only!

3



Algorithm: z

A
dv

er
sa

ry
/I

np
ut

: u

Player will always buy early 

Good for Adv:
Comp. ratio is
(z+1) / u

Comp. ratio is (z+1) / 1

Good for Algo
Comp. ratio is
u / u

Uninteresting for Adv:

1

0 1

Figure 1: Choosing more than two values

Maybe one can doevenbetter by allowing the algorithm to choose more than two values... Maybe
eveninfinitelymany values?!? The scenario is in Figure 1.

Then, the expected competitive ratio is

E[c] =
1

2
+

∫ 1

0

∫ u

0

z + 1

u
dzdu = . . . = 1.75.

Was that a valid argument? Why yes, why no?

We assumed that the adversary choosesu with uniform distribution. This is not OK. In this specific
example, an adversary can cause much more harm by choosing values close to 1. In addition, it was
not correct to sum up the ratios of the costs, instead we should compute the ratio of the expected costs.

Instead, we should rather solve

E[c] =

∫ 1
0

∫ u
0 (z + 1)p(z)d(u)dzdu +

∫ 1
0

∫ 1
u up(z)d(u)dzdu

∫ 1
0

∫ 1
0 up(z)d(u)dzdu

,

wherep(z) is the probability distribution of the algorithm, andd(u) is the probability distribution of
the adversary, with

∫
p(z) =

∫
d(u) = 1. The adversary chooses its distributiond(u) such that it

maximizes the expected competitive ratioE[c], and the algorithm chooses its distributionp(z) such

4



that it minimizesE[c].

This is a very hard task. However, we can tackle it by making the problem independent of the adver-
sarial distribution. How does this work?!?

The idea is as follows: if the adversary chooses a valueu with u ≤ 1 then it occurs an optimal cost
costopt(u) = u. If we want our algorithm to be strictlyc-competitive, all we have to do is to incur
a cost less thanc · u when being offered inputu, for all u. In other words, we have to choose the
algorithm’s probability functionp(z) such thatcostA(u) ≤ c · u.

Recall that the algorithm’s cost is

costz(u) =

{
u if u ≤ z

z + 1 if u > z
(1)

Again, it seems natural to restrict the algorithm to values between0 and1. Also the adversary can
restrict itself to values between0 and1, because, if a value higher than1 is presented, the adversary
and the algorithm infer exactly the same cost as if the value1 was presented. Therefore,

∫ u

0
(z + 1)p(z)dz +

∫ 1

u
u · p(z)dz ≤ c · u, with

∫ 1

0
p(z)dz = 1.

Having a hunch that the best probability function will probably be an equality, we immediately try

∫ u

0
(z + 1)p(z)dz + u

∫ 1

u
p(z)dz = c · u, with

∫ 1

0
p(z)dz = 1.

We first differentiate with respect tou, getting

(u + 1)p(u) +
∫ 1

u
p(z)dz + u · (−p(u)) = p(u) +

∫ 1

u
p(z)dz = c.

We again differentiate with respect tou, and get

δp(u)

δu
− p(u) = 0 ⇔ δp(u)

δu
= p(u).

That’s one of the few differential equations everybody knows:

p(u) = α · eu.

In order to revealα we use
∫ 1
0 p(z)dz = 1:

1 =
∫ 1

0
αezdz = α(e1 − e0) ⇒ α =

1

e− 1
.

In other words,p(u) = eu

e−1
. We insertp(u) into the first differentiation:

c = p(u) +
∫ 1

u
p(z)dz =

eu

e− 1
+

e1 − eu

e− 1
=

e

e− 1
.

Note that also for inputsu > 1 the inequalitycostA(u) ≤ c · costopt(u) = c · 1 holds.

Theorem 5.4 In other words, withp(z) = ez

e−1
we have an algorithm that ise

e−1
-competitive in expec-

tation.

5



Remark:

• The big question remains: Can we get any better?!?

5.3 Lower Bounds

Time to think about lower bounds. Lower bounds for randomized algorithms often use the Von Neu-
mann / Yao Principle, which we state and use without proof:

Theorem 5.5 (Von Neumann / Yao Principle)Choose a distribution over problem instances (for
ski rental, e.g.d(u)). If for this distribution all deterministic algorithms cost at leastc, thenc is a
lower bound for the best possible randomized algorithm.

For ski rental we are in the lucky situation that we can easily parameterize all possible deterministic
algorithms byz ≥ 0. Now we have to choose a distribution of inputs, withd(u) ≥ 0 and

∫
d(u) = 1.

For example,d(u) = 1/2 for 0 ≤ u ≤ 1 andd(“∞”) = 1/2.
Example algorithms:

• z = 0 (immediate buy): incurs a constant cost1 for all possible input distributions: Therefore
costz=0(d(u)) = 1.

• z = 1 (worst-case deterministic algorithm): incurs the same cost as the optimal offline algorithm
for smallu but cost2 for u = ∞ which happens with probability1/2; when summing up we see
thatcostz=1(d(u)) = 5/4.

More formally, the cost of the optimal offline algorithm is

costopt(d(u)) =
1

2

∫ 1

0
udu +

1

2
· 1 =

3

4
.

For generalz ≤ 1 the cost of the algorithm is

costz =
1

2

(∫ z

0
udu +

∫ 1

z
(z + 1)du

)
+

1

2
(z + 1)

=
1

2

(
z2

2
+ (z + 1)(1− z) + (z + 1)

)
= 1 +

z

2
− z2

4
≥ 1.

For generalz > 1 the cost of the algorithm is

costz =
1

2

∫ 1

0
udu +

1

2
(z + 1) =

1

4
+

z + 1

2
> 5/4.

Usingcostopt(d(u)) = 3/4 we conclude that the competitive ratioc is at least4/3 = 1.33.

Remarks:

• Note that for distributiond(u) indeedz = 0 is the best algorithm.

• The lower bound of1.33 and the upper bound of1.58 do not match.

6



• As argued above, the immediate buy algorithm is worst with very smallu. In order to make our
lower bound stronger it could therefore be beneficial to tune the input distribution such that it
contains more smallu values.

• Guessing the right input distribution is indeed hard. However, similarly to the upper bound, it
can be derived using differential equations. The worst input distribution isd(u) = 1/eu, for
0 < u < 1, andd(“∞”) = 1/e.

• Next, let us study some online problems in the Internet (“Web”) context. We will discover
surprising connections to ski rental.

5.4 The TCP Acknowledgement Problem

TPC is a layer 4 networking protocol of the Internet. It features, among other things:

• An error handling mechanism which tackles transmission errors and disordering of packets,
using sequence numbers and acknowlegdements.

• A “friendly” exponential slow start mechanism such that new connections do not overload the
network.

• Flow Control: A sliding window sender/receiver buffer that simplifies handling and prevents the
receiver buffer from overload.

• Congestion Control: A backoff mechanism that should prevent network overloading.

In this first part we study the TCP Acknowledgement Problem. We study a single sender/receiver
pair, where the sender sends packets and the receiver acknowledges them (without sending packets
itself). There are several TCP implementations available, with various acknowledgement-procedures.
In order to save resources, no implementation sends acknowledgements right away.1 Instead these
implementations send cumulative acknowledgements (“I received all packets up to packet x”). This
mechanism is the subject of this subsection.

At the receiver side, the situation looks like in Figure 2.

Definition 5.6 (TCP Acknowledgement Problem)The receiver’s goal is a scheme which minimizes
the number of acknowledgementsplus the sum of the latencies for each packet, where the latency of a
packet is the time difference from arrival to acknowledgement. More formally, we have

• n packet arrivals, at times:a1, a2, . . . ,an

• k acknowledgements, at times:t1, t2, . . . , tk

• And we want to minimize:

min k +
n∑

i=1

latency(i), with latency(i) = tj − ai, wherej such thattj−1 < ai ≤ tj.

1One version of Solaris, for example, always waits 50ms before acknowledging in order to support multiple acknowl-
edgements in a single message. In one version of BSD, TCP-Ack has a 200ms heartbeat, and acknowledges all packets
received so far.

7



Received packets

time

Packs
Acks

Figure 2: TCP ACK problem

Remarks:

• Note that in Figure 2 the total latency is exactly the area between the two curves.

• Clearly, we are comparing apples with oranges when comparing the number of acknowledge-
ments with the sum of latencies. However, when scaling the time accordingly, this should not be
a big problem.

• There are quite a few technical exceptions. In many implementations, signaling packets are
usually acknowledged faster (e.g. SYN, FIN); also TCP standard wants implementations to
acknowledge packets within 500ms. Since the receiver is usually also sender, it might also delay
its own sending packets.

• In our studies we do not learn the future from the past. A machine learning approach could give
a totally different perspective.

Algorithm 5.7 (z = 1 Algorithm) Thez = 1 algorithm is sketched in Figure 3. Whenever a rec-
tangle with areaz = 1 does fit between the two curves, the receiver sends an acknowledgement,
acknowledging all previous packets.

Lemma 5.8 The optimal algorithm sends an ACK between any pair of consecutive ACKs by algorithm
with z = 1.

Proof. For the sake of contradiction, assume that, among all algorithms who achieve the minimum
possible cost, there is no algorithm which sends an ACK between two ACKs of thez = 1 algorithm.
We propose to send an additional ACK at the beginning (left side) of eachz = 1 rectangle. Since this
ACK saves latency1, it compensates the cost of the extra ACK. That is, there is an optimal algorithm
who chooses this extra ACK. uu
Theorem 5.9 Thez = 1 algorithm is2-competitive

8



Received packets

time

Packs

z = 1

z = 1

z 
=

 1

Alg

Figure 3: Thez = 1 algorithm

Proof. We havecostopt = kopt + latencyopt andcostz=1 = kz=1 + latencyz=1.
Since the optimal algorithm sends at least one ACK between any two consecutive ACKs ofAz=1

(previous Lemma), we knowkz=1 ≤ kopt.

Received packets

time

Packs

opt

z = 1

Figure 4:Az=1 vs. the optimal algorithm

Also, by definition (see Figure 4),

latencyz=1 = latencyopt + latency(z = 1 withoutopt)− latency(opt without z = 1)

≤ latencyopt + latency(z = 1 withoutopt).

Using latency(z = 1 withoutopt) < kopt · 1 (if any of these rectangles were of size1 or larger,Az=1

would have ACKed earlier) we get:

9



costz=1 = kz=1 + latencyz=1

≤ kopt + latencyopt + latency(z = 1 withoutopt)

< kopt + latencyopt + kopt · 1
= 2 · kopt + latencyopt ≤ 2 · costopt

uu

Remarks:

• It’s no coincidence that we called the algorithmz = 1. Similarly to ski rental, it is possible to
choose anyz. In fact, if you really think about it, the TCP ACK problem is in fact very much
like ski rental! Indeed, if you wait for a rectangle of sizez with probabilityp(z) = ez

e−1
, you end

up with a randomized TCP ACK solution which ise
e−1

competitive in expectation.

• Many other problems are also just like ski rental! That’s why we studied it in the first place.
E.g. the Halbtax-Problem (originally known as the Bahncard problem). Buying a Halbtax-Card
which reduces each trip byβ is e

e−1+β
competitive.

5.5 The TCP Congestion Control Problem

As a next example we study the sender side of TCP. We ask: How many segments (or packets, or
bytes) per second can a sender inject into the network without overloading it? The problem is that a
sender does not know the current bandwidth between itself and the receiver. And, more importantly,
this bandwidth might change over time with other connections starting up, or closing down.

Here’s our model:

• We divide the time into periods (or slots).

• In each periodt there is an unknown thresholdut, whereut is the number of packets (or seg-
ments, or bytes) that could successfully be transmitted from sender to receiver, without over-
loading the network.

• In periodt, the sender chooses to transmitxt packets.

• If xt ≤ ut we are fine. However, sending at too conservative or small ratesxt ¿ ut is a waste of
the available bandwidth. One possible way to capture this aspect would be to use anopportunity
costfunction of the formcostt = ut − xt.

• If xt > ut, we are not fine. We are overloading the channel. There are several cost models
possible. In a severe cost model, nothing gets transmitted (costt = ut), in a less severe cost
model, some fraction of the packets might get dropped (e.g.costt = α(xt − ut)).

10



5.6 The Static Model

We start out with the simplest possible model, where the bandwidth is constant over time, that is,
ut = u. The problem is then to find the correct bandwidthu (with something like binary search); once
the sender found the correct bandwidth, there will be no more cost. We assume first thatu is an integer,
and that1 ≤ u ≤ n, that is, there is an upper boundn for the bandwidth.

Possible algorithms:

• Plain old binary search needslog n search steps. For a worst-case choice ofu the algorithm will
often inject too many packets, and (in a severe cost model) have costu = Θ(n) in most steps,
thus the total cost isΘ(n log n).

• A standard TCP congestion control mechanism is usually following the AIMD (Additive In-
crease Multiplicative Decrease) paradigm: Once TCP sends so many packets that the network
becomes overloaded, routers will start dropping packets. The sender can witness this (with
missing ACKs), and consequently decreases its transmission rate (for example in a multiplica-
tive way, e.g., by a factor2). Then the sender starts increasing its transmission rate again, but
slowly, to approach the “right” bandwidth again (for example by1, in an additive way). In our
model, if the real bandwidth isu = n − 1, such an algorithm will clearly be very much off the
right bandwidthu most of the time. Since approachingu takesΘ(n) steps, and in the severe
cost model most steps costu− xt = Θ(n), the cost of the AIMD algorithm isΘ(n2).

• The obvious question: Can we do better?!?

Algorithm 5.10 (Shrink) The algorithm operates on a pinning interval[i, j], originally [i, j] =
[1, n]. The algorithm has two phases:

• Phase 1: Find the right power-of-two-upper bound, that is, findj such that2k < j ≤ 2k+1

by testing2k + 1. If 2k + 1 ≤ u goto phase 2, else set[i, j] = [1, 2k] and stay in phase 1.

• Phase 2: We are given[i, j] with 2t−1 + 1 ≤ i < j ≤ 2t. Now we test

i + max

(
1,

2t

22m+1

)

with m being the largest integer such thatj − i < 2t

22m . Then adapt[i, j] accordingly.

Remarks:

• It can be shown that the cost of the Shrink algorithm isO(n log log n).

• For largen, it is remarkable that the vast majority of increase steps are increments by just1. And
almost all decrease steps are substantial. In other words, the algorithm is an AIMD algorithm.

• If n is not known, we can find an upper bound ofu quickly by a repeated squaring technique
first, that is, test2, then22 = 4, then42 = 16, then162 = 256, . . .. It can be shown that the total
cost isO(u log log u).

11



• There is a lower bound ofO(u log log u/ log log log u). Hence the Shrink algorithm is asymp-
totically almost optimal.

• However, this was only an warm-up example. What we are really interested in are dynamic
models.

5.7 The Dynamic Model

In this section, the threshold may vary from step to step, i.e., the adversary chooses a sequence{ut}.
Thereby, the adversary knows the algorithm’s sequence{xt} of probes/tests in advance. Clearly, we
are again in the realm of online algorithms and competitive analysis.

We have postulated thatcostAlg(I) ≤ c · costopt(I). Observe that an optimalofflinealgorithm knowing
the input (as in ski rental or TCP ACK) can always playxt = ut, which implies thatcostopt = 0. No
online algorithm can be competitive!

For this reason it seems more fruitful to look atgain (or profit) rather than cost. We update our
definition from ski rental as follows:

Definition 5.11 (Competitive Analysis) An online algorithmA is strictly c-competitive if for all
finite input sequencesI

costA(I) ≤ c · costopt(I), or

c · gainA(I) ≥ gainopt(I).

Remark:

• Note that in both casesc ≥ 1. The closerc is to1, the better is an algorithm.

For a severe cost model, a natural definition ofgain could look as follows:

gainxt(ut) =

{
xt if xt ≤ ut

0 if xt > ut

However, note that our adversary is too strong because (knowing the algorithm) it can always present
anut < xt (or, if xt = 0, anyut). The total gain of the algorithm (given as

∑
t gainAlg(t)) is 0. We

therefore need to further restrict the power of the adversary. Several restrictions seem to be reasonable
and interesting:

• Bandwidth in a fixed interval:ut ∈ [a, b]

• Multiplicatively (or additively) changing bandwidth:ut/µ ≤ ut+1 ≤ µ · ut (or ut − α ≤ ut+1 ≤
ut + α)

• Changes with bursts

In the following, the three restrictions will be studied in turn.

12



5.8 Bandwidth in a Fixed Interval

We start out by letting the adversary chooseut ∈ [a, b]. The algorithm is aware of the upper boundb
and the lower bounda. We first restrict ourselves to deterministic algorithms. In this case, note the
following:

• If the deterministic algorithm playsxt > a in roundt, then the adversary playsut = a.

• Therefore the algorithm must playxt = a in each round in order to have at leastgain = a.

• The adversary knows this, and will therefore playut = b

• Therefore,gainAlg = a, gainopt = b, competitive ratioc = b/a.

As usually, we ask whether randomization might help! Let’s try the ski rental trick immediately! In
particular, for all possible inputsu ∈ [a, b] we want the same competitive ratio:

c · gainAlg(u) = gainopt(u) = u.

¿From the deterministic case we know that it might make sense to treat the casex = a individually. (If
we do not, then the probability to choosex = a will be infinitesimally small, and the adversary only
needs to presentu = a + ε all the time, and our algorithm is in trouble since it never makes any gain.)

Algorithm 5.12 We choosex = a with probabilitypa, and any value inx ∈ (a, b] with probability
density functionp(x), with pa +

∫ b
a p(x)dx = 1.

Theorem 5.13 There is an algorithm that isc-competitive, withc = 1 + ln b
a
, “ ln” being the natural

logarithm.

Proof. Setting up the ski rental trick, we have

c ·
(
pa · a +

∫ u

a
p(x) · xdx

)
= u.

Then we differentiate with respect tou, and get,

δ

δu
= c · p(u) · u = 1 ⇒ p(u) =

1

cu
.

We plug this back into the differential equation, and get

c ·
(
pa · a +

∫ u

a

x

cx
dx

)
= cpaa + (u− a) = u ⇒ a(cpa − 1) = 0 ⇒ pa = 1/c.

To figure outc, we use that all probabilities must sum up to1:

1 = pa +
∫ b

a
p(x)dx =

1

c
+

1

c

∫ b

a

1

x
dx ⇒ 1 + ln b− ln a = c.

uu

What about the lower bound? We use the Von Neumann / Yao Principle:

13



Theorem 5.14 There is no randomized algorithm which is better thanc-competitive, withc = 1+ln b
a
.

Proof. Let a little fairy tell us the right input distribution: We chooseb with probabilitypb = a/b, and
selectu ∈ [a, b) with probability densityp(u) = a/u2. The input is OK because

pb +
∫ b

a

a

u2
du =

a

b
+ a

∫ b

a

1

u2
du =

a

b
+ a

(−1

b
− −1

a

)
= 1.

The gain of the optimal algorithm on this input is:

gainopt = b · pb +
∫ b

a
u · p(u)du = b

a

b
+

∫ b

a
u · a

u2
du = a + a

∫ b

a

1

u
du = a(1 + ln(b/a)).

The gain of a deterministic algorithm choosingx on this input is:

gainx = x · pb +
∫ b

x
x · p(u)du = x

a

b
+ ax

∫ b

x

1

u2
du = ax(

1

b
+ (

−1

b
− −1

x
)) = a.

Hence,
gainopt

gainx

=
a(1 + ln(b/a))

a
= 1 + ln(b/a).

uu

Remarks:

• Great, upper and lower bound are tight!

• Didn’t we ask foru, x being integers? In this case,c = 1 + Hb −Ha, whereHn is the harmonic
numbern defined asHn =

∑n
i=1 1/i ≈ ln n.

• Now let’s turn to the more realistic cases where the bandwidth smoothly changes over time, and
does not jump up and down like crazy.

5.9 Multiplicatively Changing Bandwidth

Now the adversary must chooseut such thatut/µ ≤ ut+1 ≤ µ · ut. The algorithm knows the maximal
possible change factorµ per period. We assume that the algorithm also knows the initial thresholdu1.
Think of µ as being a value such that the bandwidth changes a few percents only per period.

If the adversary keeps raisingu as fast as possible (ut+1 = µ · ut for several rounds), then it seems
reasonable that the algorithm does the same. In particular, if the algorithm choosesxt+1 = (1− ε)µxt

then

lim
t→∞

ut

xt

=
µt

(1− ε)t · µt
= ∞.

Therefore, if there was a successful transmission in periodt, the algorithm choosesxt+1 = µxt. On
the other hand, ifxt was not successful,xt+1 = λxt. We will setλ = 1/µ3. The idea is that at least
every other round is successful.

Lemma 5.15 After a non-successful round there is always a successful round.

14



Proof. Since we knowu1, the algorithm can choosex1 = u1, and have a success. Our invariant is that
every non-successful round is followed by a successful round. Assume, for the sake of contradiction,
that roundt + 1 is the first non-successful round which follows after a non-successful roundt, which
(by induction hypothesis) follows a successful roundt− 1 (note thatxt−1 ≤ ut−1). Sinceut ≥ ut−1/µ
for all t we haveut+1 ≥ ut−1/µ

2. On the other hand, we havext+1 = λxt = λµxt−1 = xt−1/µ
2.

Therefore,
xt+1 = xt−1/µ

2 ≤ ut−1/µ
2 ≤ ut+1,

hence roundt + 1 is a success. We have a contradiction, which proves that there can be only one
non-successful round in a row. uu

Lemma 5.16 A successful round isµ4-competitive.

Proof.

• If a successful roundt + 1 follows a successful roundt, roundt + 1 is at least as competitive as
roundt since the algorithm setxt+1 = µxt.

• If a successful roundt + 1 follows a non-successful roundt (ut < xt), then, sincext+1 = λxt

andut+1 ≤ µut we have

xt+1 = λxt > λut ≥ λut+1/µ = ut+1/µ
4.

uu

Theorem 5.17 The algorithm is (µ4 + µ)-competitive.

Proof. In a non-successful (“fail”) roundt, it holds thatut < µxt−1, becausext−1 ≤ ut−1 (cf. Lemma
5.15),xt = µxt−1 andut < µxt−1. Thus

gainopt(succ) + gainopt(fail)

gainAlg(succ)
<

µ4 · gainAlg(succ) + µ · gainAlg(succ)

gainAlg(succ)
= µ4 + µ.

uu

While this algorithm is good for smallµ, the competitive ratio grows quickly for largerµ. In the
following, we show that an algorithm which increases the bandwidth by a factorµ after successful
rounds and halves the rate after non-successful rounds is4µ-competitive.

Theorem 5.18 This new algorithm is4µ-competitive.

Proof. First, we show by induction that in each successful orgood roundt, ut ≤ 2µxt. For t = 1,
u1 = x1 and the claim holds. For the induction step, consider the roundt − 1 before the good round
t. There are two possibilities: either roundt − 1 was non-successful orbad (xt−1 > ut−1), or good
(xt−1 ≤ ut−1). If round t− 1 was bad, we havext = xt−1/2 andut ≤ ut−1µ < xt−1µ = 2µxt, hence
ut/xt < 2µ, and the claim holds. If on the other hand roundt − 1 was good, the algorithm increases
the bandwidth at least as much as the adversary. Together with the induction hypothesis, the claim
follows also in this case.

15



Having studied the gain in good rounds, we now consider bad rounds. We show that in the bad
rounds following a good roundt, the adversary may increase its gain at most by2µxt. So lett be the
good round preceding a sequence of bad rounds, t.e.,xt ≤ ut, xt+1 > ut+1, xt+2 > ut+2, etc. We
know thatxt+1 = µxt, so—because it is a bad round—ut+1 must be less thanµxt. Further, we have
xt+2 = xt+1/2 = µxt/2 and henceut+2 < µxt/2, xt+3 = µxt/4 and henceut+3 < µxt/8, etc. By a
geometric series argument, the gain of the adversary in the bad rounds is upper bounded by2µxt.

Therefore,

ρ =
gainopt(succ) + gainopt(fail)

gainAlg(succ)

<
2µ · gainAlg(succ) + 2µ · gainAlg(succ)

gainAlg(succ)

< 4µ.

uu

5.10 Changes with Bursts

In the previous section, we assumed that the bandwidth changes by at most a given constant percentage
µ over time. However, one can imagine that in the real Internet there may be quiet times where the
congestion level hardly changes, and times where there are very abrupt orburstychanges. In main
objective of this section is to present—without any analyses—an adversary model which incorporates
such a notion of bursts. Our model is based on concepts ofnetwork calculus, a tool which is typically
used to study queuing systems from a worst-case perspective.

The bursty adversaryADVnc has two parameters: Arateµ ≥ 1 andmaximum burst factorB ≥ 1.
In every round, the available bandwidthut may vary according to these parameters in a multiplicative
manner. More precisely,ADVnc may select the new bandwidthut+1 from the interval

ADVnc : ut+1 ∈ [
ut

βtµ
, ut · βt · µ],

that is, the available bandwidth may change by a factor of at mostβtµ. Thereby,βt is theburst factor
at timet. This burst factor is explained next.

On average, the available bandwidth can change by a factorµ per round. However, there may be
times of only small changes, but then the bandwidth might change by factors larger thanµ in later
rounds. This is modeled with the burst factorβt, which is defined as follows. At the beginning,βt

equalsB, i.e.,β1 = B. For t > 1, the burst factorβt is computed depending onβt−1 and the actual
bandwidth changect−1 that has happened in roundt− 1. More precisely,

βt = min{B, βt−1
µ

ct−1

}

wherect := ut+1

ut
if ut+1 > ut and ut

ut+1
otherwise. This means that if the available bandwidth changed

by a factor less thanµ in roundt, i.e.,ct < µ, the burst factorincreasedby a factorµ
ct

, and hence the
bandwidth can change more in the next round, and vice versa ifct > µ.

Therefore, the adversary is allowed to save adversarial power for forthcoming rounds. However,
this amortization is limited asβt can never become larger thanB for all roundst. Also note thatβt ≥ 1
always holds, becausect ≤ µβt by the definition ofADVnc.

16



Figure 5:Visualization ofADVnc for the case∀t : ut+1 ≥ ut. The bandwidth may increase multiplicatively in
every round, but it must never exceed the constraints from previous rounds (dashed lines).

Figure 5 visualizesADVnc for the case∀t : ut+1 ≥ ut, i.e., for increasing bandwidth only: The
bandwidth may rise by a factor ofµB in every round, unless it conflicts with a constraint from a
previous round, i.e.,∀t : ut ≤ mini∈{1,...,t−1}{ut ·B · µt−i}.

In order to analyze such bursty adversaries, similar techniques as those presented in Section 5.9
can be applied; we do not perform these computations here.

17


