The Metanet

The future of networks?

October 10th 2007

Lukas Schwab

lschwab@student.ethz.ch
The Internet - How it was intended

Uniform end-to-end connectivity
But what about...

- NATs
- Firewalls
- Routers
- Proxies
- …

They divide the network in different regions
The Internet - How it is today

No uniform end-to-end connectivity
The Internet - How it is today

No uniform end-to-end connectivity
Introducing: Regions

Regions should be made a new architectural component.

The network is viewed as a collection of regions.
What can we do with regions?

• We assume that some invariants within a region hold.
 - Algorithms & protocols may make use of that
 - Routing might become more efficient

• The networks...
 - become more robust
 - are easier to manage
 - scale more gracefully
Two concepts associated with regions

- **Boundary crossing**
 - The goal is still end-to-end communication
 - Can the other region be trusted?
 - Inter-region-routing and addressing has to be solved

- **Membership**
 - All members of the regions share some common property
 - Region might be an ideal candidate to scope a search
What is „The Metanet“?

„We call a network which builds coherent user level semantics from a regionalized infrastructure and qualitatively heterogeneous communication technologies a Metanet.“ – Metanet Whitepaper
What is „The Metanet“?

- Different communication technologies
- User does not realize that
Advantages of using different technologies

- One can use special purpose infrastructure (speed, low power, ...)
- Integration of legacy infrastructure
- Simplifies the use of any available technology
The concept raises questions

• How does addressing and routing work?
What is Plutarch?

A Greek historian (46 AD - 127 AD)

A crater on the moon
What is Plutarch?

A Metanet

Plutarch bases on the same ideas as Metanet, but is more specific.
Motivation

• IPv4 or IPv6 may be undesirable
 - e.g. sensor networks (low power consumption)

• Original internet model is out of date
 - NATs, Firewalls, ...

• Future architectural changes
 - Plutarch provides a clearer framework
Architecture

• Network end systems exist in a context
 - The same as regions from the Metanet approach

• No global names or addresses

• Interstitial functions
Contexts

- A context is an area in the network that is homogenous in some respect
- Protocol can be context-specific
- A machine may exist in two or more contexts
- Context membership may be dynamic

![Diagram of network contexts]

- Sensor Network
- IPv4 Network
- NATed IPv4 LAN
- ATM Context
- Ethernet LAN
Interstitial functions (IF)

- Exist between contexts
- Transform the data to a different context
- They already exist today
 - NATs, Firewalls, ...
- Does not have to be the same protocol on both sides
Example

IPv4 Internet

Sensor Network

WLAN

GPRS Network

Chained context

Interstitial functions
Example

Sensor Network
IPv4 Internet
GPRS Network
Bluetooth

↔ Chained context

Interstitial functions
1. There is no DNS ➫ Search for the other machine
 - „epidemic-style gossip“

2. Queries result in a set of chained contexts lists
 - e.g. {((GPRS, IPv4, SN), (GPRS, IPv4, WLAN))}
3. Logic in the host selects one context chain

4. Configure Interstitial Functions

5. Instantiate the context chain and add it to the host’s list of known contexts

6. Connection established
The concept raises questions

- How does addressing and routing work?
- How does an address look like?
Naming & Addressing

• Naming
 - Location independent
 - e.g. URLs, personal names

• Addressing
 - Location dependent
 - e.g. postal address, IPs (?), phone numbers (?)
Example: Postal network

- The postal system has no names, only addresses
- Postal addresses are assigned hierarchically
 - Switzerland, 8092 (Zürich), Rämistrasse, 101, ...
- Default routing
Default routing

• Every node knows its children and its siblings
• If a message is not for them, pass it to the parent
Example: telephone network

- **Earliest days**: phone numbers were location specific (address)
 - Similar to postal system

- **Computer-controlled telephone switches**: more complex forwarding logic
 - e.g. 0800 (toll-free), 0848 in Switzerland
 - They provide an additional level of indirection
 - They are more like names masquerading as addresses
LSI & LII

- **Location Specific Identifier**
 - Can masquerade as LSI

- **Location Independent Identifier**
 - Translation from LII to LSI
 - Translation table (might result in LII ➝ recursion)
 - Default routing
Naming & Addressing

• Naming
 - Location independent
 - e.g. URLs, personal names, IPs (LII), phone numbers (LII)

• Addressing
 - Location dependent
 - e.g. postal address, IPs (LSI), phone numbers (LSI)
New stuff

• Naming vs. Addressing
• Default routing
• Location Specific Identifier (LSI)
• Location Independent Identifier (LII)
 - Can masquerade as LSI

Let’s go back to Plutarch!
Addresses in Plutarch

- An address could be a pair of context and internal name
 - e.g. (Sensor Network, Sensor 47)

- But what about routing?
Routing in Plutarch

- IF needs to know all the other IFs
 - In the Internet that is obviously not possible
- But we can use traditional routing
 - e.g. BGP
Routing in Plutarch

- In a smaller network we might want to have a hierarchical network structure

Internet

Default routing
Plutarch: Comments on related work

- **TRIAD**
 - Retains the centrality of IPv4

- **IPNL**
 - Private realm is similar to the notion of contexts
 - Retains the centrality of IPv4
Personal opinion

My personal opinion about the Metanet and Plutarch.

• The resulting model fits the internet from today well

• It makes things easier
 – e.g. Sensor Network example

• Does not depend on IPv4 or another specific protocol

But...
Criticism (1)

Approach

The original model of the internet is not applicable anymore.

So, let's change the model!

Whoops!

How the software was designed
How the software was written
How the software was designed
Criticism (2)

Use of the old system as a starting point

Metanet and Plutarch (TRIAD & IPNL as well) try to build something new out of the old system.

Why not start from scratch? The old stuff is holding us back!

General problem in computer related areas!

Year 2038

BIOS

Now hiring: COBOL programmer
A research program at Stanford University

Two questions:

• With what we know today, if we were to start again with a clean slate, how would we design a global communications infrastructure?

• How should the Internet look in 15 years?

"The Internet? We are not interested in it."

Bill Gates, 1993
Clean slate (2)

Five key areas for research:

1. Network architecture
2. Heterogeneous applications
3. Heterogeneous physical layer technologies
4. Security
5. Economics & policy

Research in progress…
Papers

- **Plutarch: An argument for network pluralism.**
 J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, A. Warfield
 http://doi.acm.org/10.1145/944759.944763

- **The Metanet: White Paper.**
 J. Wroclawski
 http://www.cra.org/Policy/NGI/papers/wroklawWP

- **Naming, Addressing, and Forwarding Reconsidered.**
 S. Keshav
 http://blizzard.cs.uwaterloo.ca/keshav/home/Papers/data/05/naming.pdf
Other Sources

- **Metanet & Plutarch (Slides)**
 B. Godfrey
 http://cs.shenker.net/files/294lecture4a.pdf

- **Plutarch: An argument for network pluralism. (Slides)**
 A. Warfield

- **Clean slate**
 http://cleanslate.stanford.edu/