Towards an Evolvable Internet Architecture

Thomas Lohmüller
lthomas@student.ethz.ch

December 19, 2007
Towards an Evolvable Internet Architecture

Topics:
- How to evolve from IPv(N-1) to IPvN
- How to use overlay networks in legacy applications

Goals:
- Show some nice ideas for evolvability
- Describe needed technologies
- Show *creative* way how to use legacy applications with new network technologies
Outline

1. Evolvability
2. vN-Bone
3. Legacy Apps and Overlays
4. Summary
Today everyone wants to change the Internet.

- Why is it so hard to change?
- Why did the different approaches not work?
- How can we make the Internet changeable?
Once upon a Time...
In the early days of commercial Internet (mid 1990’s)

- Great faith in Internet evolution.
- Many believed ISPs would soon deploy new versions of IP

But it came different...
Today

- Success of the Internet surpassed our wildest imagination
- Deep pessimism about evolutionary architectural change
- ISPs have little incentive to deploy new architectures
- Most operating systems do not support new protocols
- Costs of universally deploying a new architecture are immense
Requirements

What is required to make the Internet evolvable?

- Foster independent innovation
- Enable customer choice
- Allow ISPs some degree of control
Basic Assumptions 1/2

A1: Assume partial ISP deployment.

- Not all ISP’s will deploy a new version of IP at the same time.
- Must work with only a subset of an ISP’s routers implementing it.

A2: Assume partial ISP participation.

Not all ISP’s are willing to participate.
Basic Assumptions 2/2

A3: Assume the existing market structure and agreements. Clients should not need a contract with an additional provider.

A4: Assume revenue flow. Assume that IPvN attracts users.

Require Universal Access
All clients can use IPvN if they choose regardless of whether their ISP deploys IPvN or not.
Open Problems

Problems on our way to IPvN:

Client-Side
1. Locate IPvN router
2. Move packets to IPvN router
3. Get IPvN address

Network
1. Topology construction
2. Addressing
3. Routing

Towards an Evolvable Internet Architecture
Option 1: Application-Level Redirection
Why this is not a good choice.

- Application queries a lookup-service for IPvN router
- Application has to tunnel packets to IPvN router

Problems:
- Who runs this lookup service?
 - Current ISPs
 - Third-party broker
- How to reach lookup-service?
- Who pays for this service?
Option II: Network-Level Redirection
The better solution.

- Every router in network (whether IPvN or not) *knows* how to forward an IPvN packet to an IPvN router
- Works with current market structure
- How can a client in a non-offering ISP be guaranteed access?

Do some "magic" here ...

![Diagram](image)
IP Anycast

- Host transmits to an anycast address
- Network is responsible for delivery to one of possibly multiple servers
- Described in *RFC 1546*
- Today in use for root DNS name servers
- Enables seamless spread of deployment
- Does not require any change in current routing infrastructure
Today, this system does work.

```bash
$ traceroute 192.88.99.1
traceroute to 192.88.99.1, 30 hops max, 40 byte packets
 1 rou-rz-1-service-inf-isg-rz.ethz.ch (129.132.216.33)
 2 rou-ref-hg-service-inf.ethz.ch (10.1.18.38)
 3 rou-fw-cla-service-inf-isg.ethz.ch (10.1.18.34)
 4 rou-fw-rz-fw-cla.ethz.ch (192.33.92.185)
 5 rou-rz-gw-fwrz-gwrz-core.ethz.ch (192.33.92.170)
 6 swiez2.ethz.ch (192.33.92.11)
 7 swiLS2-10GE-1-1.switch.ch (130.59.36.205)
 8 swiEL2-10GE-1-2.switch.ch (130.59.36.70)
 9 swiCE3-10GE-1-3.switch.ch (130.59.37.65)
10 swi6netCE1-G0-0.switch.ch (130.59.35.137)
```
Anycast Routing I
Intra-Domain-Routing

- IPvN router advertises link to anycast address
- Link-state routing (OSPF)
 - High-cost link to prevent routing through anycast address
 - IPvN router can easily identify other IPvN routers
- Distance-vector routing (RIP)
 - Zero-cost link
 - Distance-vector routing routes packets to closest IPvN router
 - Requires additional discovery-mechanism for IPvN routers to see each other
Anycast Routing II

Inter-Domain-Routing

Option 1: Use anycast address
- Non-aggregatable addrs.
- Global routes
- Propagate route in BGP
- Requires change in policy
- One additional route per anycast address

Option 2: Use unicast address
- Aggregatable addresses
- Default routes
- BGP already knows IP
- No change in policy
- Use an IP of first IPvN provider
- Additional traffic for first provider
IP Anycast Example

Default domain for A_n

Support IPvN

Thomas Lohmüller
Towards an Evolvable Internet Architecture
Open Problems

Problems on our way to IPvN:

Client-Side
1. Locate IPvN router
2. Move packets to IPvN router
3. Get IPvN address

Network
1. Topology construction
2. Addressing
3. Routing
IP in IP-Tunnel

- Very easy...
- Described in RFC 1853 from 1995
- Supported by most routers even today
Open Problems

Problems on our way to IPvN:

Client-Side
1. Locate IPvN router
2. Move packets to IPvN router
3. Get IPvN address

Network
1. Topology construction
2. Addressing
3. Routing
1. Evolvability
2. vN-Bone
3. Legacy Apps and Overlays
4. Summary

- Topology Construction
- Addressing
- Routing
- Deploying Source-Specific Multicast
Open Problems

Problems on our way to IPvN:

Client-Side
1. Locate IPvN router
2. Move packets to IPvN router
3. Get IPvN address

Network
1. Topology construction
2. Addressing
3. Routing
Intra-Domain Topology Construction

- IPv(N-1) routing protocols
- Every router has complete knowledge
- Easy to locate IPvN routers
Inter-Domain Topology Construction

- Inter-domain tunnels based on peering policies
- Use Anycast to bootstrap
- Prevention of partitions important
 - Check for connection to *default* provider
Open Problems

Problems on our way to IPvN:

<table>
<thead>
<tr>
<th>Client-Side</th>
<th>Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Locate IPvN router</td>
<td>1. Topology construction</td>
</tr>
<tr>
<td>2. Move packets to IPvN router</td>
<td>2. Addressing</td>
</tr>
</tbody>
</table>
Addressing

- **Addressing**
 - Format or structure of address
 - Address allocation
 - Advertising into routing fabric

- **Today’s Internet (IPv4 and IPv6)**
 - Address allocation and advertising by local access provider

- **How to get IPvN-address if access-provider does not support IPvN?**
Possible solutions:
- Request address from IPvN router (like DHCP)
- Self-addressing by hosts

Self-addressing in IPv6
- Well-known suffix 2002: and embedded IPv4 address
 IPv4: 100.200.100.200
 IPv6: 2002:64C8:64C8::

How to advertise and route such addresses?
Open Problems

Problems on our way to IPvN:

Client-Side
1. Locate IPvN router
2. Move packets to IPvN router
3. Get IPvN address

Network
1. Topology construction
2. Addressing
3. Routing

Thomas Lohmüller
Towards an Evolvable Internet Architecture
Routing

- Between routers
 - Native IPvN routing. No problem here...

- Between endhosts
 - Ingress router easily to reach (IP Anycast)
 - Egress also easy if destination is in IPvN enabled domain
 - What if destination is not in IPvN enabled domain?
Routing to non-IPvN Domains

- Let router advertise temporary IPvN address
 - Let client register itself at ingress router
 - Simple but departure from existing norms
 - Many non-aggregatable routes
- Use IPv(N-1) routing
 - IPv(N-1) address contained in temporary IPvN address
 - Leave IPvN network and use IPv(N-1) routing
 - Simple, but fails to fully exploit IPvN deployment
- Let IPvN routers advertise on-behalf-of IPv(N-1) domains
 - IPvN router advertises some IPv(N-1) prefixes
 - Packet leaves vN-Bone near destination.
Routing Examples: IPv(N-1) Routing

- Client
- ISP-N
- IPv(N-1) links
- IPv(N-1) router
- IPvN router
- IPvN links
- ISP-O
- ISP-M
- Server IPvN

Tom Lohmüller Towards an Evolvable Internet Architecture
Routing Examples: *on-behalf-of* Routing

- **Client**
- **ISP-O**
- **ISP-M**
- **ISP-N**
- **Server**
- **IPv(N-1) links**
- **IPv(N-1) router**
- **IPvN router**
- **IPvN links**
Source-Specific Multicast

- Deploy Source Specific Multicast (SSM)
- Provides one-to-many packet delivery
- Multicast group defined by (S,G)
 - S: Unicast address of source
 - G: Multicast group address
- Simple interface for clients
 - subscribe(S,G)
 - unsubscribe(S,G)
How it Works

1. Use IP Anycast to locate IPvM router
2. Send $\text{subscribe}(S,G)$ to ingress router
 - Encapsulated in IPv4 packet if needed
3. Router adds entry to multicast forwarding table
4. Router sends $\text{subscribe}(S,G)$ to next router if required
SSM Example
Introduction

- Overlays provide new features without changing the Internet
 - Resilient Overlay Network (RON)
 - Internet Indirection Infrastructure (i3)
 - ...
- No widespread deployment
 - Users unwilling to shift to new application programs
 - No interoperability between different overlays
OCALA

New Internet Architectures

1. Build
2. Benefit
3. Feedback

Networking Researchers

Users with existing applications

Source: http://ocala.cs.berkeley.edu/
Goals of OCALA

- Enable legacy applications to work over overlays
 - All applications which use IP
 - No changes at application needed
 - Users choose the best overlay for a particular application
- Enable hosts in different networks to talk to each other
 - Interoperability between hosts in different overlays
 - Interoperability between overlay hosts and pure IP hosts
- Factoring out common functionality
 - Concentrate on architecture; not on supporting legacy applications
 - Factor out common functionality
Add new layer below Transport Layer

- Applications
 - (ssh, Firefox, ...)
- Transport Layer
 - (TCP, UDP, ...)
- Overlay Convergence Layer (OC)
- Overlay
 - (i3, RON, DOA, ...)
- OC Independent (OC-I) Sublayer
- OC Dependent (OC-D) Sublayer
Expressing which Overlay to Use

- DNS-like names to identify machines (or services)
 - Supported by most legacy applications (but not all!)
 - Needs at least a configuration change in application
- Append a new part after top-level-domain overlayspecific.overlayname
 - ucb.i3: connect to host ucb over i3
 - ucb interpreted by overlay-specific OC-D
 - i3 overlay to use
Connection Setup in OCALA

1. $\text{DNSreq}(\text{foo.ov})$
2. $\text{setup}(\text{foo.ov})$
3. $\text{resolve}(\text{foo.ov})$
4. ID_B
5. overlay specific setup
6. $\text{tunnel} = \text{td}_{AB}$
7. $\text{OCIsetup}(\text{pd}_{AB})$
8. $\text{DNSresp}(\text{handle} = \text{IP}_{AB})$
Implementation

- As user-level proxy
- Uses *tun* device to capture packets
- Implemented for Mac OS X, Linux and Windows XP
- about 40k SLOC of C++
- OC-D modules
 - Dynamic loadable libraries
 - Simple 5 function call interface
 - i3 and RON-modules written internally
 - Many more modules written by others
- GUI for configuring OCALA
Requirements to Evolve to IPvN

- **IPvN Hosts**
 - Must be able to create temporary addresses
 - Has to contain IPv(N-1) address

- **IPvN routers**
 - Should be able to advertise IPv(N-1) routing information
 - Have to participate in IPv(N-1) unicast and anycast
 - Perform IPv(N-1) forwarding
 - Participate in vN-Bone construction
 - Perform IPvN forwarding *(of course...)*
Current State of IPv6

- Routing to ingress router by IP Anycast
 - Operational at 192.88.99.1, RFC 3068
 - Transparently used by some home-routers
- Temporary IPv6 address containing IPv4 address
 - Standardized in RFC 3056
 - Implemented in current operating systems
- v6-Bone
 - Operational. See http://go6.net/ipv6-6bone/
Towards an Evolvable Internet Architecture
Evolvable Internet: My Opinion

- Good introduction to IPv6 deployment
- Summary of many other papers (60 papers referenced!)
- All ideas pretty obvious. No surprises...
OCALA: Summary

- User-level proxy: Simple to deploy
- Ready-to-use
 - Simplify implementation of new overlay-module
 - Real users, real applications
- Does not work with packet rewriting

Applications
(ssh, Firefox, ...)

Transport Layer
(TCP, UDP, ...)

Overlay Convergence
Layer (OC)

Overlay
(i3, RON, DOA, ...)

OC Independent
(OC-I) Sublayer

OC Dependent
(OC-D) Sublayer
OCALA: My Opinion

- *Just add another layer*
- Helps to simplify implementation of new overlays
- Is’s a hack
 - Misuse of DNS hostname
 - Bad implementation (uses `tun` device)
 - *Library preloading* with external configuration would be a much cleaner solution
- Only useable in testing environments
Discussion

Topics:
- Evolution to IPvN
 - IP Anycast
 - Addressing
 - Routing in vN-Bone
 - IPvM (example)
- Evolution to IPv6
- OCALA
Further Reading

Towards an evolvable internet architecture
S. Ratnasamy, S. Shenker S. McCanne

OCALA: An Architecture for Supporting Legacy Applications over Overlays.
Dilip Joseph, Jayanthkumar Kannan, Ayumu Kubota, Karthik Lakshminarayanan, Ion Stoica, Klaus Wehrle