

Acoustic Detection (Shooter Detection)

- Sound travels much slower than radio signal (331 m/s)
- This allows for quite accurate distance estimation (cm)
- Main challenge is to deal with reflections and multiple events

Ad Hoc and Sensor Networks - Roger Wattenhofer - 9/2

Rating

Area maturity

First steps Text book

· Practical importance

No apps Mission critical

· Theoretical importance

Not really Must have

Overview

- Motivation
- Clock Sources
- Reference-Broadcast Synchronization (RBS)
- Time-sync Protocol for Sensor Networks (TPSN)
- · Gradient Clock Synchronization

Motivation

- Synchronizing time is essential for many applications
 - Coordination of wake-up and sleeping times (energy efficiency)
 - TDMA schedules
 - Ordering of collected sensor data/events
 - Co-operation of multiple sensor nodes
 - Estimation of position information (e.g. shooter detection)
- · Goals of clock synchronization
 - Compensate offset* between clocks
 - Compensate drift* between clocks

*terms are explained on following slides

Ad Hoc and Sensor Networks - Roger Wattenhofer - 9

Properties of Clock Synchronization Algorithms

- External versus internal synchronization
 - External sync: Nodes synchronize with an external clock source (UTC)
 - Internal sync: Nodes synchronize to a common time
 - to a leader, to an averaged time, or to anything else
- One-shot versus continuous synchronization
 - Periodic synchronization required to compensate clock drift
- A-priori versus a-posteriori
 - A-posteriori clock synchronization triggered by an event
- Global versus local synchronization (explained later)
- · Accuracy versus convergence time, Byzantine nodes, ...

Ad Hoc and Sensor Networks - Roger Wattenhofer - 9/6

Clock Sources

- · Radio Clock Signal:
 - Clock signal from a reference source (atomic clock) is transmitted over a long wave radio signal
 - DCF77 station near Frankfurt, Germany transmits at 77.5 kHz with a transmission range of up to 2000 km
 - Accuracy limited by the distance to the sender,
 Frankfurt-Zurich is about 1ms.
 - Special antenna/receiver hardware required

- Global Positioning System (GPS):
 - Satellites continuously transmit own position and time code
 - Line of sight between satellite and receiver required
 - Special antenna/receiver hardware required

Clock Devices in Sensor Nodes

	Stri	ı otı	ırc
•	> tri	ICTI	ırc

Platform	System clock	Crystal oscillator
Mica2	7.37 MHz	32 kHz, 7.37 MH
TinyNode 584	8 MHz	32 kHz
Tmote Sky	8 MHz	32 kHz

- External oscillator with a nominal frequency (e.g. 32 kHz)
- Counter register which is incremented with oscillator pulses
- Works also when CPU is in sleep state
- Accuracy
 - Clock drift: random deviation from the nominal rate dependent on power supply, temperature, etc.

- E.g. TinyNodes have a maximum drift of 30-50 ppm at room temperature

Sender/Receiver Synchronization

Round-Trip Time (RTT) based synchronization

- · Receiver synchronizes to the sender's clock
- Propagation delay δ and clock offset θ can be calculated

$$\delta = \frac{(t_4 - t_1) - (t_3 - t_2)}{2}$$

$$\theta = \frac{(t_2 - (t_1 + \delta)) - (t_4 - (t_3 + \delta))}{2} = \frac{(t_2 - t_1) + (t_3 - t_4)}{2}$$

Ad Hoc and Sensor Networks - Roger Wattenhofer - 9/

Disturbing Influences on Packet Latency

- Influences
 - Sending Time S
 - Medium Access Time A
 - Transmission Time T
 - Propagation Time P_{AB}
 - Reception Time R

(up to 100ms)

(up to 500ms)

(tens of milliseconds, depending on size)

(microseconds, depending on distance)

(up to 100ms)

- Asymmetric packet delays due to non-determinism
- Solution: timestamp packets at MAC Layer

Ad Hoc and Sensor Networks - Roger Wattenhofer - 9/10

Some Details

- · Different radio chips use different paradigms:
 - Left is a CC1000 radio chip which generates an interrupt with each byte.
 - Right is a CC2420 radio chip that generates a single interrupt for the packet after the start frame delimiter is received.

 Still there is quite some variance in transmission delay because of latencies in interrupt handling (picture right).

General Framework

 The clock synchronization framework must provide the abstraction of a correct logical time to the application. This logical time is based on the (inaccurate) hardware clock, and calibrated by exchanging messages with other nodes in the network.

Reference-Broadcast Synchronization (RBS)

- · A sender synchronizes a set of receivers with one another
- · Point of reference: beacon's arrival time

$$\begin{split} t_2 &= t_1 + S_S + A_S + P_{S,A} + R_A \\ t_3 &= t_1 + S_S + A_S + P_{S,B} + R_B \\ \theta &= t_2 - t_3 = (P_{S,A} - P_{S,B}) + (R_A - R_B) \end{split}$$

- Only sensitive to the difference in propagation and reception time
- · Time stamping at the interrupt time when a beacon is received
- After a beacon is sent, all receivers exchange their reception times to calculate their clock offset
- Post-synchronization possible
- · E.g., least-square linear regression to tackle clock drifts
- Multi-hop?

Ad Hoc and Sensor Networks - Roger Wattenhofer - 9/13

Time-sync Protocol for Sensor Networks (TPSN)

- · Synchronization phase
 - Root node issues a time sync packet which triggers a random timer at all level 1 nodes
 - After the timer is expired, the node asks its parent for synchronization using a synchronization pulse
 - The parent node answers with an acknowledgement
 - Thus, the requesting node knows the round trip time and can calculate its clock offset
 - Child nodes receiving a synchronization pulse also start a random timer themselves to trigger their own synchronization

Time-sync Protocol for Sensor Networks (TPSN)

- Traditional sender-receiver synchronization (RTT-based)
- Initialization phase: Breadth-first-search flooding
 - Root node at level 0 sends out a level discovery packet
 - Receiving nodes which have not yet an assigned level set their level to +1 and start a random timer
 - After the timer is expired, a new level discovery packet will be sent
 - When a new node is deployed, it sends out a level request packet after a random timeout

Why this random timer

Ad Hoc and Sensor Networks — Roger Wattenhofer — 9/1

Time-sync Protocol for Sensor Networks (TPSN)

$$\begin{split} t_2 &= t_1 + S_A + A_A + P_{A,B} + R_B \\ t_4 &= t_3 + S_B + A_B + P_{B,A} + R_A \\ \theta &= \frac{(S_A - S_B) + (A_A - A_B) + (P_{A,B} - P_{B,A}) + (R_B - R_A)}{2} \end{split}$$

- Time stamping packets at the MAC layer
- In contrast to RBS, the signal propagation time might be negligible
- Authors claim that it is "about two times" better than RBS
- Again, clock drifts are taken into account using periodical synchronization messages

- Problem: What happens in a non-tree topology (e.g. grid)?
 - Two neighbors may have bad synchronization?

Flooding Time Synchronization Protocol (FTSP)

- · Each node maintains both a local and a global time
- Global time is synchronized to the local time of a reference node
 - Node with the smallest id is elected as the reference node
- Reference time is flooded through the network periodically

- Timestamping at the MAC Layer is used to compensate for deterministic message delays
- Compensation for clock drift between synchronization messages using a linear regression table

Ad Hoc and Sensor Networks - Roger Wattenhofer - 9/17

From single-hop to multi-hop

 Many protocols don't even handle single-hop clock synchronization well. On the left figures we see the absolute synchronization errors of TPSN and RBS, respectively. The figure on the right presents a single-hop synchronization protocol minimizing systematic errors.

- · Even perfectly symmetric errors will sum up over multiple hops.
 - In a chain of n nodes with a standard deviation σ on each hop, the
 expected error between head and tail of the chain is in the order of σ√n.

Ad Hoc and Sensor Networks — Roger Wattenhofer — 9/18

Best tree for tree-based clock synchronization?

- Finding a good tree for clock synchronization is a tough problem
 - Spanning tree with small (maximum or average) stretch.
- Example: Grid network, with $n = m^2$ nodes.
- No matter what tree you use, the maximum stretch of the spanning tree will always be at least m (just try on the grid figure right...)
- In general, finding the minimum max stretch spanning tree is a hard problem, however approximation algorithms exist [Emek, Peleg, 2004].

Local/Gradient Clock Synchronization

- 1. Global property: Minimize clock skew between any two nodes
- Local ("gradient") property: Small clock skew between two nodes if the distance between the nodes is small.
- 3. Clock should not be allowed to jump backwards
 - You don't want new events to be registered earlier than older events.
- Example:

Trivial Solution: Let t = 0 at all nodes and times

- 1. Global property: Minimize clock skew between any two nodes
- 2. Local (gradient) property: Small clock skew between two nodes if the distance between the nodes is small.
- 3. Clock should not be allowed to jump backwards
- To prevent trivial solution, we need a fourth constraint:
- 4. Clock should always to move forward.
 - · Sometimes faster, sometimes slower is OK.
 - · But there should be a minimum and a maximum speed.

Ad Hoc and Sensor Networks - Roger Wattenhofer - 9/21

Theoretical Bounds for Clock Synchronization

- · Network Model:
 - Each node i has a local clock L_i(t)
 - Network with n nodes, diameter D.
 - Reliable point-to-point communication with minimal delay μ
 - Jitter ε is the uncertainty in message delay
- Two neighboring nodes u, v cannot distinguish whether message is faster from u to v and slower from v to u, or vice versa. Hence clocks of neighboring nodes can be up to ε off.

- Hence, two nodes at distance D may have clocks which are εD off.
- This can be achieved by a simple flooding algorithm: Whenever a node receives a new minimum value, it sets its clock to the new value and forwards its new clock value to all its neighbors.

Ad Hoc and Sensor Networks - Roger Wattenhofer - 9/22

Local/Gradient Clock Synchronization

Model

- Each node has a hardware clock $H_i(\cdot)$ with a clock rate $h_i(t)$ such that $(1-\epsilon)t \leq h_i(t) \leq (1+\epsilon)t$
- The hardware clock of node *i* at time *t* is $H_i(t) = \int_0^t h_i(t)dt$
- Each node has a logical clock $L_i(\cdot)$ which increases at the rate of $H_i(\cdot)$
- Employ a synchronization algorithm A to update the logical clock using the hardware clock and neighboring messages
- The message transmission delay is in (0,1]

Ad Hoc and Sensor Networks - Roger Wattenhofer - 9/23

Synchronization Algorithms: Amax

- Question: How to update the logical clock based on the messages from the neighbors?
- Idea: Minimizing the skew to the fastest neighbor
 - Set the clock to the maximum clock value received from any neighbor (if greater than local clock value)
- Poor local property: Fast propagation of the largest clock value could lead to a large skew between two neighboring nodes
 - First all messages take 1 time unit, then we have a fast message!

Synchronization Algorithms: Amax'

- The problem of A^{max} is that the clock is always increased to the maximum value
- Idea: Allow a constant slack y between the maximum neighbor clock value and the own clock value
- The algorithm $A^{max'}$ sets the local clock value $L_i(t)$ to
 - $L_i(t) := \max(L_i(t), \max_{j \in N_i} L_j(t) \gamma)$
 - \rightarrow Worst-case clock skew between two neighboring nodes is still $\Theta(D)$ independent of the choice of γ !
- How can we do better?
 - Adjust logical clock speeds to catch up with fastest node (i.e. no jump)?
 - Idea: Take the clock of all neighbors into account by choosing the average value?

Ad Hoc and Sensor Networks - Roger Wattenhofer - 9/25

Synchronization Algorithms: Aavg

• A^{avg} sets the local clock to the average value of all neighbors:

$$L_i(t) := \max(L_i(t), \frac{1}{|N_i|} \sum_{j \in N_i} L_j(t))$$

- · Surprisingly, this algorithm is even worse!
- We will now show that in a very natural execution of this algorithm, the clock skew becomes really large!

Ad Hoc and Sensor Networks - Roger Wattenhofer - 9/26

Synchronization Algorithms: Aavg

- All ε_i for $i \in \{1,...,n-1\}$ are arbitrary values with $\varepsilon_i > 0$.
- The clock rates can be viewed as *relative* rates compared to the fastest node *n*. We will show:

Theorem: In the given execution, the largest skew between neighbors is $2n-3 \in \Theta(D)$. Hence, the global skew is $\Theta(D^2)$.

Synchronization Algorithms: Aavg

We first prove two lemmas:

Lemma 1: In this execution it holds that $\forall t, \ \forall i \in \{2,...,n\}$: $L_i(t) - L_{i-1}(t) \le 2i - 3$, independent of the choices of $\varepsilon_i > 0$.

Proof:

Define $\Delta L_i(t) := L_i(t) - L_i(t-1)$. It holds that $\forall \ t \ \forall \ i : \Delta L_i(t) \le 1$. $L_1(t) = L_2(t-1)$, because node 1 has only one neighbor (node 2). Since $\Delta L_2(t) \le 1$ for all t, we know that $L_2(t) - L_1(t) \le 1$ for all t.

Assume now that it holds for $\forall t, \ \forall j \leq i \colon L_j(t) - L_{j-1}(t) \leq 2j-3$. We prove a bound on the skew between node i and i+1: For t=0 it is trivially true that $L_{i+1}(t) - L_i(t) \leq 2(i+1) - 3$, since all clocks start with the same time.

Synchronization Algorithms: Aavg

Assume that it holds for all t' ≤ t. For t+1 we have that

$$L_{i}(t+1) \geq \frac{L_{i+1}(t) + L_{i-1}(t)}{2}$$

$$\geq \frac{L_{i+1}(t) + L_{i}(t) - (2i-3)}{2}$$

$$\geq \frac{L_{i+1}(t) + L_{i}(t+1) - 1 - (2i-3)}{2}$$

$$\geq L_{i+1}(t+1) - (2(i+1)-3).$$

- The first inequality holds because the logical clock value is always at least the average value of its neighbors.
- · The second inequality follows by induction.
- The third and fourth inequalities hold because $\Delta L_i(t) \le 1$.

Ad Hoc and Sensor Networks - Roger Wattenhofer - 9/29

Synchronization Algorithms: Aavg

Lemma 2: $\forall i \in \{1,...,n\}$: $\lim_{t \to \infty} \Delta L_i(t) = 1$.

Proof:

- Assume ∆L_{n-1}(t) does not converge to 1.
- Argument for simple case:
 ∃ ε > 0 such that ∀ t: ΔL_{n-1}(t) ≤ 1 ε.
 As ΔL_n(t) is always 1, if there is such an ε, then lim_{t→∞} L_n(t) L_{n-1}(t) = ∞, a contradiction to Lemma 1.
- A bit more elaborate argument: $\Delta L_{n-1}(t) = 1 \text{ only for some } t, \text{ then there is an unbounded number of times } t' \text{ where } \Delta L_{n-1}(t) < 1, \text{ which also implies that } \lim_{t \to \infty} L_n(t) L_{n-1}(t) = \infty, \text{ again contradicting Lemma 1.}$ Again, $\lim_{t \to \infty} \Delta L_{n-1}(t) = 1$.
- Applying the same argument to the other nodes, it follows inductively that \forall $i \in \{1,...,n\}$: $\lim_{t \to \infty} \Delta L_i(t) = 1$.

Ad Hoc and Sensor Networks - Roger Wattenhofer - 9/30

Synchronization Algorithms: Aavg

Theorem: The skew between neighbors *i* and *i*-1converges to 2*i*-3.

Proof:

- We show that $\forall i \in \{2,...,n\}$: $\lim_{t \to \infty} L_i(t) L_{i-1}(t) = 2i 3$.
- According to Lemma 2, it holds that $\lim_{t\to\infty} L_2(t) L_1(t) = \Delta L_1(t) = 1$.
- Assume by induction that $\forall j \le i$: $\lim_{t \to \infty} L_i(t) L_{i-1}(t) = 2j 3$.
- According to Lemmas 1 & 2, lim_{t→∞} L_{i+1}(t) L_i(t) = Q for a value Q ≤ 2(i+1)-3. If (for the sake of contradiction) Q < 2(i+1)-3, then

$$\lim_{t \to \infty} L_i(t) = \lim_{t \to \infty} \frac{L_{i-1}(t-1) + L_{i+1}(t-1)}{2}$$
$$= \lim_{t \to \infty} \frac{2L_i(t-1) - (2i-3) + Q}{2}$$

and thus $\lim_{t \to \infty} \Delta L_i(t)$ < 1, a contradiction to Lemma 2.

Synchronization Algorithms: A^{bound}

- Idea: Minimize the skew to the slowest neighbor
 - Update the local clock to the maximum value of all neighbors as long as no neighboring node's clock is more than B behind.
- · Gives the slowest node time to catch up
- Problem: Chain of dependency
 - Node *n-1* waits for node *n-2*, node *n-2* waits for node *n-3*, ...
 - $_{\rightarrow}$ Chain of length $\Theta(n)$ = $\Theta(D)$ results in $\Theta(D)$ waiting time
 - → Θ(D) skew!

Synchronization Algorithms: Aroot

- · How long should we wait for a slower node to catch up?
 - Do it smarter: Set $B = O(\sqrt{D}) \to \text{skew}$ is allowed to be $O(\sqrt{D}) \to \text{waiting time}$ is at most $O(D/B) = O(\sqrt{D})$ as well

Ad Hoc and Sensor Networks - Roger Wattenhofer - 9/33

Synchronization Algorithms: Aroot

· When a message is received, execute the following steps:

max := Maximum clock value of all neighboring nodes min := Minimum clock value of all neighboring nodes if (max > own clock and $min + U\sqrt{D+1}$ > own clock own clock := $min(max, min + U\sqrt{D+1})$ inform all neighboring nodes about new clock value

• This algorithm guarantees that the worst-case clock skew between neighbors is bounded by

Some Results

- All natural/proposed clock synchronization algorithms seem to fail horribly, having at least square-root skew between neighbor nodes.
- Indeed [Fan, Lynch, PODC 2004] show that when logical clocks need to obey minimum/maximum speed rules, the skew of two neighboring clocks can be up to Ω(log D / log log D), where D is the diameter of the network.
- Nice open problem...? Unfortunately not! In 2008 a $O(\log D)$ clock skew algorithm was presented at [Lenzen et al., FOCS 2008]. Also, the lower bound seems to be $\Omega(\log D)$...

Theory vs. Practice

end if

- Can these theoretical findings be applied to practice?
 - Do the theoretical models represent reality?
- Example: Experimental evaluation on a ring topology

- Results: Synchronization error between Node 8 and Node 15
 - Tree-based synchronization (FTSP, left) leads to a larger error than a simple gradient clock synchronization algorithm (right)

Ad Hoc and Sensor Networks - Roger Wattenhofer - 9/35

Open Problem

- As listed on slide 9/6, clock synchronization has lots of parameters. Some of them (like local/gradient) clock synchronization have only started to be understood.
- Local clock synchronization in combination with other parameters are not understood well, e.g.
 - accuracy vs. convergence
 - fault-tolerance in case some clocks are misbehaving [Byzantine]
 - clock synchronization in dynamic networks

Ad Hoc and Sensor Networks - Roger Wattenhofer - 9/37