1 Filter for an Input Stream [exam problem]

We would like to construct an automaton, that recognizes substrings from an input stream. The input stream consists of symbols \(\{ a, b \} \) and the substrings that the automaton should detect are of the form \(bab^* \). In other words, the input of the automaton is a series of \(a \)'s and \(b \)'s. The automaton should go into an accepting state whenever the most recently received symbols form a string of the form \(bab^* \). For example, in the input stream \(babaabaabab \), the automaton should be in an accepting state exactly after the reception of an underlined symbol. Construct a deterministic finite automaton that precisely fulfils the above specification.

2 Nondeterministic Finite Automata

a) Consider the alphabet \(\{ ♦, ♠ \} \). Construct an NFA with \(ε \)-transitions that accepts all strings containing a sub-string \(♦♠♠♦ \) at least twice.

b) Construct an NFA which accepts the following regular expression: \((00 \cup (0(0 \cup 1))^*)^* \).

c) Consider a machine \(M := (Q, Σ, δ, q_0, Q) \). Is it possible to make a statement about the strings being accepted by \(M \)? Does it make a difference whether \(M \) is deterministic or not?

3 De-randomization

a) Give a regular expression for the following NFA and construct an equivalent NFA without \(ε \)-transitions.

![Diagram](image)

b) Finally, transform the machine into a deterministic automaton.
4 States Minimization

Simplify the following automaton. Explain why your changes are allowed. Finally, give the corresponding regular expression.

5 “Regular” Operations in UNIX

In this exercise you are asked to provide a UNIX command to find all lines in a file ending with “password” or “passwort”, followed by an unknown number of vowels.