
Distributed
Computing Group

HS 2008 Prof. Dr. R. Wattenhofer / Raphael Eidenbenz / Roland Flury

Discrete Event Systems

Sample Solution to Exercise 4

1 Regular and Context-Free Languages

a) Sometimes, even simple grammars can produce tricky languages. We can interpret the 1s
and 2s of the second production rule as opening and closing brackets. Hence, L(G) consists
of all correct bracket terms where at least one 0 must be in each bracket.

L(G) is not regular. Choose x = 1n02n ∈ L(G). Let x = uvw with |uv| ≤ n and |v| > 0
(pumping lemma). Because of |uv| ≤ n, uv is in the first 1n of x. According to the pumping
lemma, we have uviw ∈ L(i ≥ 0). If we choose i = 0 we get 1k02n /∈ L(k < n).

b) Since every regular language is also context-free, we can choose an arbitrary regular language.
For example, we can choose the language L = {0n1, n ≥ 1} which is clearly regular. The
corresponding context-free grammar is S → 0S | 1.

2 Context-Free Grammars

a) S → SAS | A , A→ 0 | 1.

Note: The language is regular!

b) One possible solution is to use three productions: A first one which guarantees that there is
at least one ’1’ more; a second one which produces all possible strings with the same number
of ’0’ and ’1’; and finally, a production to add further 1’s at arbitrary places:

S → T1T
T → T0T1T | T1T0T | U

U → 1U | ε

3 Pushdown Automata

a) ε, 0, 00, ()

b) It is unambiguous, i.e., there is a unique derivation tree for each word. Each word w 6= ε
in L(G) contains a rightmost 0 or parenthesis expression ′(S)′ that can be unanimously
assigned to a A in each node of the derivation tree. Due to S → SA, each sequence of As is
unambiguous.

c) The following deterministic pushdown automaton does the job:

Figure 1: Pushdown automaton accepting L(G)

4 Pumping Lemma revisited

a) Let us assume that L is regular and show that this results in a contradiction.

We have seen that any regular language fulfills the pumping lemma. I.e. there is a p, such
that for every word u ∈ L with |u| ≥ p it holds that: u can be written as u = xyz with
|xy| ≤ p and 1 ≤ |y| ≤ p, such that ∀i ≥ 0 : xyiz ∈ L.

In order to obtain the contradiction, we need to show that there is at least one word w ∈ L
with |w| ≥ p for which it is not possible to form the string partition w = xyz, s.t. |xy| ≤ p,
1 ≤ |y| ≤ p, and ∀i ≥ 0 : xyiz ∈ L.

First, we need to overcome the problem that we do not know the value of p. The standard
trick is to consider words whose length depends on p. E.g. consider the word w = 1p2 ∈ L.
For sure, |w| ≥ p.

By the pumping lemma, we can write w = 1p2
as xyz. What remains to show is that there

is no partition xyz that satisfies |xy| ≤ p, 1 ≤ |y| ≤ p, and ∀i ≥ 0 : xyiz ∈ L.

The expression w = xyiz can be written as xyiz = 1|x|1i|y|1|z|. Because |w| = p2, we know
that |z| = p2 − |x| − |y|, and therefore, xyiz = 1|x|1i|y|1p2−|x|−|y| = 1p2+(i−1)|y|.

To obtain the contradiction, we need to find an i ≥ 0, such that xyiz /∈ L. For example,
consider i = 0. Then we have w0 = xy0z = 1p2−|y|. Clearly, |w0| < p2, as |y| ≥ 1. Note
that we argue independent of the partition w = xyz, we do not pick a specific x and y and
therefore the following holds for all possible partitions.

If w0 ∈ L, then |w0| is a square number, smaller than p2. But the next smaller square number,
(p − 1)2, is strictly smaller than |w0|: (p − 1)2 = p2 − 2p + 1 < p2 − p ≤ p2 − |y| = |w0|,
which shows that |w0| cannot be a square number. This shows that there is no partition for
w that allows to fulfill the pumping lemma conditions. But this should be the case if L is
regular. Thus, we have a contradiction, which concludes the proof.

b) Consider the alphabet Σ = {a1, a2, ..., an} and the language L =
⋃n

i−1 a
∗
i . The language is

regular, as it is the union of regular languages, and the smallest possible pumping number p
for L is 1. But any DFA needs at least n+ 1 states to distinguish the n different characters
of the alphabet. Thus, for the DFA, we cannot deduce any information from p about the
minimum number of states.

The same argument holds for the NFA.

2

