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Discrete Event Systems

Sample Solution to Exercise 8

1 Safety Properties und Invarianten

1. A Petri-Net is deadlock-free if there is always at least one enabled transition in the Petri
net. To show this, we can model the system as a labelled transition system (LTS) and then
show that all states have an outgoing transition.

2. We have a deadlock if all philosophers are waiting for their forks. In our Petri Net, philoso-
pher i waits when he is not eating( i.e., there is no token in eati) and there are not enough
tokens to fire the transition takeForki. Let us denote this situation by the proposition waiti.
Hence the invariant we want to proof is Ψ = ¬(wait1 ∧ wait2 ∧ wait3).

3. We transform the Petri net into an LTS via state space exploration. We label a state by
d1d2d3d4d5d6 where each di represents one place in the Petri net. The value of di shall
indicate the number of tokens that are currently in the place corresponding to di. In par-
ticular, we represent by d1-d3 the places Fork1-Fork3 and by d4-d6 the places eat1-eat3.
E.g., s0 = 111000 represents the initial state where all Fork places have one token. To find
the next states in our LTS, we explore all possible combinations of transitions that can be
fired from s0. All transitions takeForki are enabled, however, only one of them can fire.
This gives three possible LTS transitions T1-T3 and leads to three new states s1 = 001100,
s2 = 100010 and s3 = 010001. Ti can be interpreted as philosopher i taking the two forks.
From each of these states, there is only one possible transition. If we are in s2 ,e.g., there is
a token in eat2 and Fork1. Thus putForkDown2 is the only enabled transition in our Petri
net. If we fire this transition, we get to the initial state again. In fact, all states s1-s3 have
an LTS transition back to s0. You can interpret a transition T−i as philosopher i putting
down his forks.
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To see that our model is deadlock-free, we just have to realize, that each state in the con-
structed LTS has at least one outgoing transition. To proof the invariant Ψ, we can translate



all states in the LTS to propositions. In the initial state s0, no philosopher is waiting. In
states s1-s3, one philosopher eats and the two others are waiting. In any state, Ψ is true.
The model is deadlock-free.

2 LTL-Properties

1. Please note that there was one inhibitor arc from state yellow to the transition switch1

missing in the exercise sheet. This prevents switch1 from firing when there are tokens in
yellow.

• Transform Petri net into LTS. We again do a state exploration starting from the initial
state where where there is one token in red. We denote the LTS states by d1d2d3 where
d1 corresponds to the number of tokens in red, d2 to the tokens in yellow and d3 to the
tokens in green.
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The initial state s0 is 100 and there is one transition, switch1 enabled. We fire switch1

and get one token in red and one token in yellow, thus s1 = 110. Now switch2 is the
only transition enabled. We fire it and get one token in green, s2 = 001. Firing switch3

yields one token in yellow, s3 = 010. Firing switch4 gets us back to the initial state s0.

• Negate property. The LTL formulas we want to check are 23green (read:“always
eventually green”) meaning that at any point in time, we can be sure that the lights
will turn green, and 32green (read “eventually always green”) meaning that after some
initial time period, the light will always stay green. We build the inverse using the LTL
equivalence rules:

¬ϕ1 = ¬(23green) = 32¬green

¬ϕ2 = ¬(32green) = 23¬green

• Construct NBA. We construct the non-deterministic Buechi automata (NBA) for ¬ϕ1

and ¬ϕ2.

NBA of ¬ϕ1: q0 q1 q2
¬green green

true ¬green true

NBA of ¬ϕ2: q0 q1

¬green

green

green ¬green

• Construct product automaton. We construct the Cartesian product of the LTS and the
NBA.
In Figure 1, the automaton on the left depicts the Cartesian product for ¬ϕ1 and the
automaton on the right the one for ¬ϕ2. On the vertical axis we have the states of the
LTS and on the horizontal we have the states of the NBA. Notice that not all power
states are reachable. We construct the product by combinig the proposition that holds
in the current LTS state with the possible transitions in the NBA. E.g., in the initial
state (s0, q0), ¬green holds thus we can take the NBA transitions ¬green and true
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Figure 1: Cartesian product

(since true is always true ,). In the Cartesian product, this results in a transition from
state (s0, q0) to (s1, q1) and to (s1, q0) respectively.
Once we have the Cartesian product automaton, we check whether there exists a cycle
which contains an accepting state. If this is the case, we can conclude that the LTL-
formula we are checking does not hold. If no cycle contains an accepting state, we
may derive that the LTL-formula holds. In the Cartesian product for the formula ¬ϕ1,
there are two cycles (colored blue in the illustration). Both do not contain any accepting
state, hence we know that ϕ1 holds. In the Cartesian product for the formula ¬ϕ2,
there is one cycle containing accepting states, hence we know that ϕ2 is false.

2. In order to check the LTL-formula Φ, we have to first compute the inverse of Φ.

¬Φ = ¬2(notSent⇒ 3sent)
= 3¬(notSent⇒ 3sent)
= 3(notSent ∧ ¬3sent)
= 3(notSent ∧2¬sent)

For the third equality, we used the logic equivalence rule ¬(a⇒ b) = a∧¬b. Informally, ¬Φ
means that at some point in time, both notSent and ¬sent hold and after that, notSent
may become false again, but sent must stay false forever. We now represent ¬Φ by an NBA.

NBA of ¬Φ: q0 q1 q2
notSent ∧ ¬sent sent

true ¬sent true

The Cartesian product of the LTS and the NBA looks as follows:
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The product contains one cycle with an accepting state, namely the self loop of (s1, q1). This
provides us with an infinite run that fulfills ¬Φ. Hence we have found a counter-example
which proves that Φ does not hold. In the LTS, starting in s1 and taking the transition
doSomething infinitely often, we will never establish sent. This disproves Φ which says that
it is always the case that when “a message” is not sent, it will sooner or later be sent.

3 Taskaktivierungsmuster und Timed Automata

See LoesungAufgabe3.pdf

4 Scheduling und Timed Automata

See UppaalModel Aufg4.xml
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