
23

Secure Time Synchronization in Sensor
Networks

SAURABH GANERIWAL
University of California, Los Angeles
CHRISTINA PÖPPER and SRDJAN C̆APKUN
ETH Zurich
and
MANI B. SRIVASTAVA
University of California, Los Angeles

Time synchronization is critical in sensor networks at many layers of their design. It enables
better duty-cycling of the radio, accurate and secure localization, beamforming, and other col-
laborative signal processing tasks. These benefits make time-synchronization protocols a prime
target of malicious adversaries who want to disrupt the normal operation of a sensor network.
In this article, we analyze attacks on existing time synchronization protocols for wireless sensor
networks and we propose a secure time synchronization toolbox to counter these attacks. This
toolbox includes protocols for secure pairwise and group synchronization of nodes that either lie in
the neighborhood of each other or are separated by multiple hops. We provide an in-depth analysis
of the security and the energy overhead of the proposed protocols. The efficiency of these protocols
has been tested through an experimental study on Mica2 motes.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms: Algorithms, Design, Experimentation, Security

Additional Key Words and Phrases: Sensor networks, time synchronization, message authentica-
tion code, delay

ACM Reference Format:

Ganeriwal, S., Pöpper, C., C̆apkun, S., and Srivastava, M. B. 2008. Secure time synchronization
in sensor networks. ACM Trans. Inf. Syst. Secur. 11, 4, Article 23 (July 2008), 35 pages. DOI =
10.1145/1380564.1380571. http://doi.acm.org/10.1145/1380564.1380571.

Authors’ addresses: S. Ganeriwal, Electrical Engineering Department, University of California,
Los Angeles, CA 90095-1594; email: saurabh.ganeriwal@gmail.com; C. Pöpper, Department
of Computer Science, ETH Zurich, 8092 Zurich, Switzerland; email: poepperc@inf.ethz.ch; S.
C̆apkun, Department of Computer Science, ETH Zurich, Switzerland; email: capkuns@inf.ethz.ch;
M. B. Srivastava, Electrical Engineering Department, University of California, Los Angeles, CA
90095-1594; email: mbs@ucla.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or direct com-
mercial advantage and that copies show this notice on the first page or initial screen of a display
along with the full citation. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credits is permitted. To copy otherwise, to republish, to post
on servers, to redistribute to lists, or to use any component of this work in other works requires
prior specific permission and/or a fee. Permissions may be requested from the Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or
permissions@acm.org.
c© 2008 ACM 0098-3500/2008/07-ART23 $5.00 DOI: 10.1145/1380564.1380571. http://doi.acm.org/

10.1145/1380564.1380571.

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

23: 2 · S. Ganeriwal et al.

1. INTRODUCTION

Time synchronization is a critical middleware service in sensor networks,
required at many layers of their design. Examples of existing sensor net-
work applications where precise time is needed include consistently measur-
ing the time of events detected by the sensors, measuring the time-of-flight
of sound, distributing an acoustic beam forming array, forming a low-power
TDMA radio schedule, integrating a time series of proximity detections into
a velocity estimate, suppressing redundant messages by recognizing duplicate
detections of the same event by different sensors, ordered logging of events dur-
ing system debugging, integrating multisensor data, or coordinating on future
action. Imagine the detrimental effect on the functionality of these applica-
tions if a malicious adversary is able to abuse the underlying time synchro-
nization protocol; measured values will be associated with faulty time-stamps,
nodes will have faulty estimates about the location of other nodes, packets
will be lost if the sleep-wakeup schedules of nodes do not intersect, etc. It will
be trivial for adversaries to perform replay attacks in security protocols that
use time-stamping. Collaborative data processing and signal processing tech-
niques will be adversely affected. Manzo et al. [2005] analyze the impact of
malicious attacks on time synchronization to sensor network applications and
middleware services such as localization (shooter localization [Maroti et al.
2004]), TDMA based channel sharing (flexible power scheduling [Hohlt et al.
2004] and Pedamacs [Ergen and Varaiya 2006]), and cryptography (µ-Tesla
[Perrig et al. 2002; Schaller et al. 2007]). To quote from Manzo et al. [2005]:
“In many application areas, time synchronization allows engineers to design
simpler and more elegant algorithms. For certain classes of applications [...],
algorithms cannot provide correct results without an accurate and reliable
time-synchronization service.”

Time synchronization has been thoroughly studied in sensor networks
[Sundararaman et al. 2005] and there are several prototype implementations,
such as RBS [Elson et al. 2002], TPSN [Ganeriwal et al. 2003], and FTSP
[Maroti et al. 2004], which can achieve synchronization precision of a few
microseconds. However, none of these protocols were designed to operate in
adversarial settings. Realizing the inadequacy of existing time synchroniza-
tion solutions, we have developed several schemes to achieve secure time syn-
chronization in sensor networks. Our approach involves integrating security
mechanisms into existing protocols as well as developing new protocols. We
compare our schemes with recent proposals for secure time synchronization in
sensor networks [Sun et al. 2005, 2006a]. Recently, a secure broadcast time
synchronization scheme has been proposed [Rasmussen et al. 2007] that is not
tailored for sensor networks.

Our contributions are multi-fold. First, we perform an in-depth security
analysis of sender-receiver synchronization protocols [Ganeriwal et al. 2003].
We show that, as sensor networks are deeply coupled with the physical world
that they monitor, a malicious adversary can subvert the time synchronization
protocol by exploiting weaknesses at the interface between the sensor network
and the physical world. Specifically, we show the feasibility of a pulse-delay

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

Secure Time Synchronization in Sensor Networks · 23: 3

attack, where an external attacker can arbitrarily skew the calculated clock
offset between a pair of nodes. Examples of time synchronization protocols vul-
nerable to these attacks include TPSN [Ganeriwal et al. 2003], LTS [Greunen
and Rabaey 2003], FTSP [Maroti et al. 2004], Mini/Tiny Sync [Sichitiu and
Veerarittiphan 2003]. We note that these attacks are also feasible on receiver-
receiver synchronization [Elson et al. 2002].

Second, we integrate security mechanisms into the basic approach of sender-
receiver synchronization; we propose a protocol for secure pairwise time
synchronization in sensor networks. We show that at a nominal overhead,
our protocol can overcome attacks from external attackers. We further show
that our protocol achieves the same synchronization precision as the insecure
protocols achieve in a nonmalicious setting. In a malicious environment, our
protocol can restrict the maximum impact of the attacker on the synchroniza-
tion precision to under a few micro-seconds on Mica2 motes, and, therefore, can
prevent the synchronization error from becoming unbounded. In other words,
our protocol is resilient to attacks by sophisticated attackers (who, when our
protocol is used, can skew the clock offset only by a few microseconds). Fur-
thermore, we show that it is infeasible for a mote-class attacker to carry out
successful attacks against our protocol.

Third, we propose a protocol for secure group synchronization. This protocol
can be used by sensor network applications such as object tracking, intruder
detection, beamforming and fire monitoring, where a primary requirement is
that the synchronization error between any two nodes in a monitoring group
is bounded. Our solution for secure group synchronization is not only resilient
to external attacks, but it can also handle inconsistent behavior from a sub-
set of nodes in the group. This behavior can either be the result of attacks
performed by compromised nodes in the group or of nonmalicious corruptive
processes such as hardware faults. Our protocol works in both scenarios, being
completely agnostic to the cause of the inconsistent behavior. This protocol is
based on the Byzantine agreement protocol, proposed in Lamport et al. [1982].
It does not require any explicit cooperation between the group nodes or any
prior knowledge about the identity of internal attackers in the group. We will
show the efficiency of our solution through simulations and through an exper-
imental study performed on a group of Mica2 motes.

Finally, we discuss how protocols for secure pairwise and group synchro-
nization can be extended to synchronize nodes multiple hops away from each
other. We discuss how our protocols can be used to provide secure network-
wide synchronization.

The organization of the article is as follows: In Section 2, we review some
basics about sensor node clocks and time synchronization in sensor networks.
Section 3 summarizes the attacker model used throughout the article. Sec-
tions 4 and 5.4.3 present solutions for secure pairwise and group synchro-
nization of sensor nodes respectively. In Section 6, we present a protocol for
securely synchronizing nodes multiple hops away from each other. We briefly
discuss existing solutions for secure network-wide synchronization in Section 7
and conclude the article in Section 8.

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

23: 4 · S. Ganeriwal et al.

2. TIME SYNCHRONIZATION IN SENSOR NETWORKS

Approaches for synchronizing a pair of nodes can be broadly classified as
sender-receiver [Ganeriwal et al. 2003] or receiver-receiver [Elson et al. 2002].
In the sender-receiver protocol, a single node synchronizes its clock to the clock
of a reference node using bidirectional communication. Receiver-receiver syn-
chronization relies on measuring the differences in the reception times of sig-
nals sent by a reference node.

Protocols for network-wide clock synchronization [Elson et al. 2002; Ganeri-
wal et al. 2003] rely on these pairwise synchronization techniques to establish
relationships between every network node and the reference node. This is
typically achieved by forming paths in the sensor network, through which all
network sensors synchronize to the reference nodes. Synchronization through
multi-hop paths can be performed such that the first sensor on the path syn-
chronizes to the base station and all other nodes synchronize pairwise to their
preceding neighbors on the path in an ascending order [Ganeriwal et al. 2003]
(i.e., besides routing the messages down the path all intermediate network
nodes synchronize their own clocks).

In this work, we focus on the sender-receiver protocol, which is the basis
for several synchronization schemes such as TPSN [Elson et al. 2002], LTS
[Greunen and Rabaey 2003], and Mini/Tiny Sync [Sichitiu and Veerarittiphan
2003]. Although the malicious attacks on time synchronization that we discuss
in the coming section are also applicable to receiver-receiver synchronization,
the security mechanisms that we propose in this article are only applicable to
sender-receiver synchronization.

2.1 Sensor Node Clock

Every sensor node maintains its own clock and this is the only notion of time
that a node has. The clock is an ensemble of hardware and software compo-
nents; it is essentially a timer that counts the oscillations of a quartz crystal
running at a particular frequency. Let us represent this clock for node A by CA .
The difference in the clocks of two sensor nodes is referred as the offset error
between them. There are three reasons for the nodes to be representing differ-
ent times in their respective clocks: (1) The nodes might have been started at
different times, (2) the quartz crystals at each of these nodes might be running
at slightly different frequencies, causing the clock values to gradually diverge
from each other (termed as the skew error), or (3) the frequency of the clocks
can change differently over time because of aging or ambient conditions such
as temperature (termed as the drift error). These errors can be summarized as
follows:

1. Offset δ = CA (t) − CB(t)

2. Skew η = ∂CA (t)
∂t

− ∂CB(t)
∂t

3. Drift λ = ∂2CA (t)

∂t2
− ∂2CB(t)

∂t2

In this article, we focus on achieving instantaneous synchronization be-
tween sensor nodes. Thus, the objective of our protocols is to estimate the
offset error between the nodes, so that the clocks can be corrected accordingly.

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

Secure Time Synchronization in Sensor Networks · 23: 5

We do not aim to estimate the drift or the skew errors. Thus, neither our attack
model nor our security solutions concern protocols for long-term synchroniza-
tion of sensor nodes such as RATS [Ganeriwal et al. 2005].

2.2 Sender-Receiver Synchronization

Pairwise sender-receiver synchronization is performed by a handshake proto-
col between a pair of nodes. This protocol is executed in three steps as follows:

Pairwise Sender-receiver Synchronization

1. A(T1) → (T2)B: A , B, sync

2. B(T3) → (T4)A: B, A , T2, T3,ack

3. A calculates offset δ = (T2−T1)−(T4−T3)
2

Here, T1 and T4 represent times measured by the local clock CA of node A.
Similarly, T2 and T3 represent times measured by CB. At time T1, A sends
a synchronization pulse packet to B. Node B receives this packet at T2, where
T2 is equal to T1 + δ + d. Here, δ and d represent the offset between the two
nodes and the end-to-end delay respectively. At time T3, B sends back an
acknowledgment packet. This packet contains the values of T2 and T3. Node
A receives the packet at T4. Similarly, T4 is related to T3 as T4 = T3 − δ + d.
Node A can now calculate the clock offset δ and the end-to-end delay d:

δ =
(T2 − T1) − (T4 − T3)

2
; d =

(T2 − T1) + (T4 − T3)

2
(1)

and, subsequently, synchronize its clock to B’s clock: CA = CA + δ.

3. ATTACKS ON TIME SYNCHRONIZATION

In this section, we review attacks on sender-receiver synchronization protocols.
We start by presenting our system and attacker models.

3.1 System Model

Our system consists of a set of sensor nodes, which communicate using radio
transmissions. We assume that the radio link between neighboring devices is
bidirectional. The network is operated by an authority. The authority controls
the network membership and assigns a unique identity to each node. Each
pair of nodes holds a shared secret key that can either be manually preloaded
into the nodes during the deployment phase or can be generated during the
network setup phase using key establishment protocols (e.g., Perrig et al. 2001;
Eschenauer and Gligor 2002; Chan et al. 2003; Liu and Ning 2003).

3.2 Attacker Model

We consider an omnipresent but computationally bounded adversary. She con-
trols the communication channel in the sense that she is able to eavesdrop,
insert, modify, and block arbitrary messages by adding her own signal to the
channel (e.g., in order to jam the signal). Our attacker model is similar to the
Dolev-Yao threat model [Dolev and Yao 1981] in that the attacker is limited by

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

23: 6 · S. Ganeriwal et al.

Fig. 1. Pulse-delay attack. The adversary (M) jams and replays messages at a later time, thus
delaying their reception at the receiver.

the constraints of the used cryptographic methods regarding the contents of
the messages that she can compose.

We distinguish two attacker models: internal and external. In the external
attacker model we assume that none of the nodes involved in the protocol are
compromised. Thus, an external attacker cannot authenticate herself as an
honest network node to other network nodes or to the central authority. An
internal attacker, however, controls one or more network nodes. We assume
that when a node is compromised, its secret keys are known to the attacker.
Subsequently, compromised nodes can authenticate themselves as legitimate
nodes to the authority and to other network nodes. A noncompromised node
can also misbehave because of nonmalicious corruptive processes such as soft-
ware, hardware, or system faults. We classify these nodes likewise as inter-
nal attackers. As we will show, our protocols are indifferent to the cause of
misbehavior.

3.3 External Attacks

External attacks are those in which an attacker manipulates the communica-
tion between pairs of mutually trusted nodes and causes them to desynchro-
nize. We consider an attack as successful if the nodes calculate a faulty offset
value, δ, but accept it as being correct.

There are several ways how the attacker can influence the calculation of the
offset: (1) by modifying the values of T2 and T3, (2) by message forging and
replay, and (3) by delaying the transmission of the messages between the nodes
and thus increasing the value of T2 (or T4). The first two attacks can be easily
prevented by traditional security primitives that protect the integrity and the
authenticity of the transmitted messages.

The third attack, which we call the pulse-delay attack, is more challenging
to detect. Notably, T2 is measured as the time at which the initial synchro-
nization pulse packet sent by A is received at B. If an attacker delays the time
at which B receives the synchronization pulse, she will be able to modify the
computation of the offset at A. To delay the synchronization pulse an attacker
can simply jam the initial pulse and replay it at some arbitrary time in the fu-
ture (Figure 1) or, if the nodes are not within each others’ transmission ranges,
she can create a wormhole and then schedule the packets between the nodes
at will. Both attacks cannot be prevented by the use of conventional crypto-
graphic primitives. For the first scenario we assume that the attacker can jam
the communication between two nodes by transmitting signals which disrupt

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

Secure Time Synchronization in Sensor Networks · 23: 7

the packet reception. This can be achieved by using stealth and disruptive
jamming that cannot be detected at the receiver. Currently available sensor
network platforms use 433MHz Chipcon1000, 2.4 GHz IEEE 802.15.4 compli-
ant (Direct Sequence – DSSS) or Bluetooth (Frequency Hopping – FHSS). Even
if DSSS and FHSS resist well various types of jamming because of their low
transmitting RF power (1mW), these sensor platforms are vulnerable to broad-
band jamming. Recently, [Xu et al. 2005] showed that jamming attacks are
indeed feasible against Mica2 motes and that detecting these attacks requires
significant resources. The attacker can perform a similar pulse-delay attack
on the acknowledgement packet to modify T4. Note that if the nodes are not in
each others’ transmission ranges, the attacker does not need to perform jam-
ming in order to achieve pulse delay, which makes pulse-delay attacks feasible
even if sophisticated jamming detection techniques are deployed by the nodes.

If an attacker performs a pulse-delay attack on the transmitted messages of
the time synchronization protocol, the clock offset δ and the end-to-end delay d

become:

δ =
(T2 − T1) − (T4 − T3) + 1

2
; d =

(T2 − T1) + (T4 − T3) + 1

2
(2)

where 1 is the pulse delay introduced by the attacker.
This shows that the attacker can arbitrarily change the computed clock off-

set by varying the pulse delay. An important observation is that by performing
a pulse-delay attack, the attacker also changes the computed end-to-end delay.
Note that it is infeasible for the attacker to just change the computed clock
offset δ without changing the computed end-to-end delay d. As we will show in
later sections, we use this observation to detect pulse-delay attacks.

4. SECURE PAIRWISE SYNCHRONIZATION

To detect attacks on pairwise time synchronization we propose the following
Secure Pairwise Synchronization Protocol (SPS). It is designed to be run by
two nodes that reside within each others’ communication ranges.

Secure Pairwise Synchronization (SPS)

1. A(T1) → (T2)B: A , B, NA , sync

2. B(T3) → (T4)A: B, A , NA , T2, T3,ack,

MACKA B
[B, A , NA , T2, T3,ack]

3. A calculates delay d = (T2−T1)+(T4−T3)
2

If d ≤ d∗ then δ = (T2−T1)−(T4−T3)
2

else abort

In this protocol, message integrity and authenticity are ensured through the
use of Message Authentication Codes (MAC) and of a key KA B shared between
A and B. This prevents external attackers from modifying values in the syn-
chronization pulse or in the acknowledgement packet, without being detected.
Furthermore, the attacker cannot impersonate node B as she does not know

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

23: 8 · S. Ganeriwal et al.

the secret key KA B. Replay attacks are prevented by using a random nonce
NA . In SPS, pulse-delay attacks are detected by comparing the computed mes-
sage end-to-end delay d, with the maximal expected message delay d∗. If the
attacker jams and replays the original packet, the new packet will arrive at
the receiver with a delay that is the sum of the times that the attacker needs
to receive the packet, process it, and transmit it, and of the synchronization
delay 1 that the attacker tries to introduce. Note that the calculation of the
end-to-end delay comes as an auxiliary benefit of the time synchronization pro-
tocol; we have not added any overhead on the functionality of sender-receiver
synchronization. If the computed delay is greater than the maximal expected
delay, we abort the offset calculation.

Clearly the performance of this scheme relies on the fact that the value of
d∗, referred to as the maximal delay, is known. In the next section, we show
that d∗ can be accurately estimated, and that the packet transmission time is
much longer than d∗, which enables the detection of the attack. We provide a
testimony to this claim by carrying out experiments on Mica2 motes.

4.1 End-to-End Delay Estimation

There are three major components that contribute to the end-to-end delay of a
packet traversing a wireless communication link. These are (1) medium access
time: this time depends on the node density and the traffic patterns and can
vary from few microseconds to several minutes, (2) packet transmission time:
this is the time needed for a packet to be transmitted bit-by-bit by the radio of
the sender node. This time is in the order of hundreds of microseconds, but is
deterministic in nature. It depends on the packet size and on the sender’s radio
speed. (3) Signal propagation time: this is the time of the radio signal propa-
gation in air and is in the order of a few nanoseconds. A detailed breakdown of
the end-to-end packet delay can be found in Ganeriwal et al. [2003].

As can be observed from above, the medium access delay introduces the
highest uncertainty in the end-to-end delay. A way around this problem is to
time-stamp the packets below the MAC (Medium Access Control) layer. This
approach has been used by existing time synchronization approaches in sensor
networks [Ganeriwal et al. 2003] to achieve an accuracy of few microseconds.

4.1.1 Measurements on Mica2 Motes. In this section, we present the re-
sults that were obtained by a prototype implementation of SPS on Mica2
motes. The implementation uses the time-stamping library provided by TPSN
[Ganeriwal et al. 2003] and the cryptographic library provided by TinySec
[Karlof et al. 2004]. TPSN (Timing-sync Protocol for Sensor Networks) is one of
the most prominent proposals for time synchronization in sensor networks that
is based on sender-receiver synchronization; it uses MAC layer time stamping
to achieve an accuracy of approximately 10µs for Mica2 motes. TinySec, a sym-
metric cryptographic library, is used to calculate the Message Authentication
Code (MAC) on the fly. The packets are time-stamped as they are about to be
transmitted at the physical layer.

One of our objectives was to gauge the distribution of the end-to-end delay
using this implementation of SPS, so that an appropriate value of the maximal

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

Secure Time Synchronization in Sensor Networks · 23: 9

Fig. 2. End-to-end delay over a link.

Table I. Statistics of the End-to-End Delay Over a Link

Maximum delay 768 µs

Minimum delay 755 µs

Average delay davg 762 µs

Standard deviation 2.82 µs

delay d∗ could be calculated. We ran this prototype implementation of SPS on
a pair of motes and calculated the end-to-end delay (d in Equation (1)) for 200
independent runs. We repeated the complete procedure for 5 different pairs
of motes in order to remove any hardware specific bias. In the end, we had
1000 independent measurements of the end-to-end delay. Figure 2 shows the
actual delay measured in every run and Table I summarizes the statistics of
the measurements. In our experiment, the measured delay concentrates on
14 different discrete values, each with a distance of about 1µs. The reasons
for the discrete results are twofold: (1) the time is measured with a limited
granularity on Mica2 motes (about 0.25µs) and (2) software delay happens at
the granularity of the CPU clock cycles (with microsecond precision).

Under the assumption of a Gaussian distribution d ∼ N(davg, σ) as reported
by authors in [Elson et al. 2002; Ganeriwal et al. 2003], the true delay will be in
the interval [davg −3σ, davg + 3σ], with 99.7% confidence. We are time-stamping
the first byte of the SFD (Start Frame Delimeter) at the transmitter and the
end of the second byte of the SFD at the receiver. Thereby, we expect the
calculated end-to-end delay to equal roughly two times the byte transmission
time (the size of SFD is 2 bytes). We measured the byte transmission time to
be roughly 380µs. Note that the variable factor in time-stamping the packet
is only the software uncertainty. The MAC uncertainty is removed by time-
stamping the packet below the MAC layer and the signal propagation delay is
of the order of nanoseconds (it takes 10 to hundreds of nanoseconds for a radio
signal to travel a distance of 10 to 50 m).

Note that the average value of the end-to-end packet delay is not of much
significance to us. The crucial factor is the standard deviation in the estimation
of end-to-end delay. It is of the order of few microseconds and roughly 0.5% of
the absolute value of davg. This implies that the end-to-end packet delay will be
within a range of 3% of the average delay davg, with a probability of 99.9%. This
allows us to choose an appropriate and stable value of the maximal expected
delay d∗.

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

23: 10 · S. Ganeriwal et al.

4.2 Performance Evaluation

In this section, we evaluate the performance of SPS using two metrics: (1) the
synchronization precision which it can achieve in a non-malicious setting, and
(2) the maximum impact of a pulse-delay attack on the achieved synchroniza-
tion precision.

4.2.1 Synchronization Precision in a Nonmalicious Setting. SPS (and
sender-receiver synchronization in general) involves two packet transfers; first
from the sender to the receiver and then a reply back from the receiver. Since
the node hardware and software are the same for all network nodes, we can
model the end-to-end delay in each direction with the same Gaussian distri-
bution, i.e., dsender to receiver = dreceiver to sender = d ∼ N(davg, σ). If the end-to-end
delay was the same in both communication directions, we would have been able
to synchronize the nodes with zero error. From the above equation, it can be
easily derived that dvariable, defined as the difference of the end-to-end delays in
both directions, also follows a Gaussian distribution, i.e., dvariable ∼ N(0, σ

√
2)1.

This variability in the delay directly contributes to the synchronization er-
ror. As shown in Elson et al. [2002] and Ganeriwal et al. [2003], the syn-
chronization precision is related to the variability in the end-to-end delay as
ǫ ∼ dvariable/2. Therefore, in this scenario the synchronization error also follows
a Gaussian distribution given by ǫ ∼ N(0, σ/

√
2).

4.2.2 Attacker Impact. As shown in the previous section, with very high
probability, the end-to-end delay will not exceed davg + 3σ . We can thus safely
set the maximal delay to:

d∗ = davg + 3σ ≈ 771µs (3)

We note that since the end-to-end delay follows a Gaussian distribution, it
can take a very large value even in a non-malicious setting. By setting the
maximal delay to 771µs, our protocol will classify large delays as being the
consequence of an attack. However, we would like to point out that this false
negative probability is low (∼ 0.15%).

The worst-case scenario (best case for the attacker) occurs, when the end-
to-end delay in both directions, from sender to receiver and vice-versa, is equal
to the minimum expected delay, davg − 3σ . In this case, the attacker can intro-
duce a maximum pulse delay of 1 = 12σ . The sender node will calculate the
end-to-end delay as:

d = davg − 3σ + (12σ/2) = davg + 3σ ≤ d∗ (4)

Thus, the maximum pulse delay that an attacker can introduce is 12σ

(around 40µs). The attacker will need to employ sufficiently fast and sophis-
ticated hardware to carry out a pulse-delay attack that does not increase the

1Software delay occurs at two different nodes and, hence, can be considered independent. We as-
sume that the signal propagation delay is independent in each direction. Even if it was dependent
in the two directions, it would not have a significant impact on the distribution of the delay.

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

Secure Time Synchronization in Sensor Networks · 23: 11

end-to-end delay by more than 40µs. This is infeasible for an external mote-
class attacker. The radio speed of Mica2 motes is 78.5 kbps. Even if the at-
tacker receives and forwards the message byte-by-byte, the delay introduced
by this operation will be at least 100µs. For other existing sensor networking
platforms with higher bitrates (in the order of few hundreds of kbps), the de-
lay may be less, but the delay they introduce must still fall below a smaller
maximal delay. Even if an external attacker, (e.g., with more sophisticated
hardware), could tamper with the time synchronization by delaying messages,
she could only do so within the precision of the synchronization precision—all
other changes will be detected.

4.3 Pre-deployment Configuration of the Maximal Delay

Interestingly, the distribution of the end-to-end delay, and hence the value of
the maximal delay d∗, does not depend on the actual distance between the
sensor nodes. The reasons for this are twofold: (1) The actual value of d∗ is in
the order of hundreds of microseconds, while the RF propagation delay over a
wireless link (the only distance-dependent term in the packet propagation time
from one node to another) is only in the order of nanoseconds for a distance of
one meter. Most of the time is needed for transmitting the packet bit by bit at
the physical layer, due to the relatively slow radios in these types of systems
(maximum speed of 250 kbps). Therefore, even if a node is communicating with
a nearby node (< 30cm) or a distant node (> 10m), the relative difference in the
end-to-end delays for the two scenarios will be in the order of few nanoseconds.
(2) Existing sensor nodes have clocks that can only measure to an accuracy of
microseconds, making it infeasible to even calculate this difference.

We carried out an empirical evaluation of this assertion by measuring the
end-to-end delay between pairs of nodes which were kept at different distances
from one another. As anticipated, the distribution of the end-to-end delay was
the same for all pairs. This has a strong implication: there is no need to esti-
mate the value of the maximal delay d∗ at runtime—it can be calculated before
the deployment of the network and the nodes can be preconfigured with this
value, greatly reducing the overhead. We do note that the value of the maxi-
mal delay will differ for sensor networking platforms that use different radios.
For example, d∗ will be different for Mica2 and MicaZ motes. However, a sta-
ble value of d∗ can always be calculated, regardless of the sensor networking
platform.

4.4 Resiliency to Attacks

The previous section provided a brief theoretical analysis of the performance
of SPS in malicious and nonmalicious settings. In this section, we provide
experimental results, obtained using Mica2 motes, in order to gauge both the
synchronization precision achieved by SPS in nonmalicious settings and its
resiliency against external attackers.

These experiments were done in the SOS [Han et al. 2005] environment, a
reconfigurable operating system for sensor networks. The experimental setup
consisted of three motes. One of the motes was designated as the sender node

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

23: 12 · S. Ganeriwal et al.

Fig. 3. Experimental study on Mica2 motes.

Table II. Statistics of the Synchronization Error in Malicious and Nonmalicious Settings.
The Table Shows that the SPS Attack Detection Probability Increases with the Pulse Delay;

When it Exceeds 30µs, the Attack is Always Detected

Attack detection
Experiment Average error Maximum error Minimum error probability

Non Malicious 12.05 µs 35 µs 1 µs NA

1 = 10 µs 19.44 µs 44 µs 1 µs 1%

1 = 20 µs 30.92 µs 61 µs 1 µs 37%

1 = 25 µs 35.67 µs 75 µs 16 µs 82%

1 = 30 µs NA NA NA 100%

and it was responsible for initiating the SPS protocol. The other mote was des-
ignated as the receiver. A pairwise secret key was preconfigured into the motes,
and was used to generate MACs for packet authentication. As mentioned in
the previous section, the value of the maximal delay d∗ was also preconfigured
into the motes and it was set to 771µs. The maximum clock granularity of the
local clocks at the motes was set to 1µs. After the completion of the SPS pro-
tocol, as indicated by the LEDs on the motes, a third mote was used to trigger
an external interrupt at both motes. The synchronization error was calculated
by the difference in the triggering time of the external interrupt at the two
motes. The sender node added the newly calculated clock offset to its clock
while reporting the time.

We ran this experiment 25 times with the same pair of motes. Then we re-
peated the whole experiment with three other pairs of motes to remove any
hardware specific bias. Figure 3(a) plots the calculated synchronization error
in these 100 independent runs and Table II summarizes the statistics. SPS
achieves a synchronization precision of around 12µs. These numbers are sim-
ilar to the ones achieved by existing (insecure) time synchronization proto-
cols [Elson et al. 2002; Ganeriwal et al. 2003]. Thus, in a nonmalicious setting,
SPS achieves the same accuracy as the existing protocols. The extra computa-
tion overhead of the MAC calculation, which is done on-the-fly, does not impact
the accuracy of time synchronization.

Although there are implementations of jamming on Mica2 motes [Xu et al.
2005], it is infeasible to introduce a valid pulse-delay attack against SPS with
a mote class attacker, as we explained in the previous section. Thereby, we
decided to emulate an external attack, wherein we can introduce a pulse de-
lay that is of the order of a few microseconds. Specifically, we modified the

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

Secure Time Synchronization in Sensor Networks · 23: 13

underlying time-stamping library. In order to introduce a pulse delay 1, we
deliberately added 1 to the received timestamp T4 at the sender node. This
is consistent with our attack model, as we do not modify any content in the
packets.

Figures 3b and 3c plot the synchronization error between the two nodes for
1 = 10µs and 25µs, respectively. The zero readings in the figures correspond
to the scenario where the attack was detected, i.e., the calculated end-to-end
delay exceeded the maximal delay and the protocol was aborted. Table II sum-
marizes the statistics. The last column in this table marked as Attack detection

probability refers to the percentage of cases when the attack was detected. We
were able to introduce a pulse delay of 25µs with a nominal probability (≈ 0.2),
but the attack was always detected with a pulse delay of 30µs. This further
justifies the need of sophisticated hardware to carry out a valid pulse-delay
attack. As anticipated, the synchronization precision is inversely proportional
to the magnitude of the attack (higher pulse delay). As shown in Table II, SPS
can ensure that on average the two sensor nodes will never be desynchronized
by more than 40µs.

4.5 Recovery

In SPS, the process of time synchronization is aborted after the detection of a
pulse-delay attack. Clearly, if an attacker keeps continuously jamming the
communication channel, the sensor network won’t be usable and therefore
there is no point in developing secure time synchronization protocols for such
scenarios. Instead, we focus on the scenario where the attacker intermittently
jams the communication channel for a short duration of time. An interesting
question is whether we can make our time synchronization protocol cognizant
of the pulse-delay attack and develop remedial actions. Since the end-to-end
delay is precisely known, we ask the following question: Is it feasible to es-
timate the pulse delay and recover the accurate clock offset between the two
nodes from the wrongly calculated value?

In this section, we will show that it is infeasible to recover from a pulse-
delay attack and the only solution is to rerun the protocol. Let us consider the
best possible case, where the end-to-end delay is precisely known and is always
equal to davg. A pulse-delay attack can be carried out in three different ways;
we will consider each of these scenarios individually in the following sections.

4.5.1 Scenario I: Pulse-Delay Attack on the Packet From A to B. Let us
consider the scenario where the packet from A to B is delayed by 1 [same as
Equation (2)]. We introduce some more notations, after which, we can rewrite
Equation (2) as:

derr =
(T2 − T1) + (T4 − T3) + 1

2
= davg +

1

2
(5)

δerr =
(T2 − T1) − (T4 − T3) + 1

2
= δ +

1

2
(6)

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

23: 14 · S. Ganeriwal et al.

Here, δerr and derr represent the erroneous offset and the end-to-end delay
respectively, as they are calculated by the sender node. Our objective is to
calculate the right offset, represented by δ. Note that we have replaced the
end-to-end delay d of Equation (2) by davg. The value of the pulse delay 1 can
be calculated using Equation (5). Replacing this in the Equation (6), the offset
becomes:

δ = δerr −
1

2
= δerr − (derr − davg) (7)

4.5.2 Scenario II: Pulse-Delay Attack on the Packet From B to A. Now we
consider the case that the reply packet has been delayed by 1. Equation (2)
becomes

derr =
(T2 − T1) + (T4 − T3) + 1

2
= davg +

1

2

δerr =
(T2 − T1) − (T4 − T3) − 1

2
= δ −

1

2
(8)

And the offset can be calculated as:

δ = δerr +
1

2
= δerr + (derr − davg) (9)

4.5.3 Scenario III: Both Packets Are Under Attack. In this case, imagine
that the attacker carries out an attack on both packet transmissions and in-
troduces a pulse delay of 11 and 12 respectively. Equation (2) becomes

derr =
(T2 − T1) + (T4 − T3) + 11 + 12

2
= davg +

11 + 12

2

δerr =
(T2 − T1) − (T4 − T3) + (11 − 12)

2
= δ +

11 − 12

2
(10)

Clearly, it is not possible to calculate the value of three variables, δ, 11, and
12, from just two equations. Furthermore, no additional packet exchanges be-
tween the two nodes can solve this problem, as every additional packet can
also be potentially delayed by a pulse delay, 13. As a result, every additional
equation adds an additional variable 13 to the system of equations, and there-
fore does not improve the relative difference between independent equations
and the number of variables.

4.5.4 Summary. As can be seen above, it is theoretically feasible to recover
the value of the offset in only two of the three possible scenarios. However, note
that even these two scenarios have different recovery mechanisms; Equations
(7) and (9). The paradox lies in the fact that it is impossible for a sender node

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

Secure Time Synchronization in Sensor Networks · 23: 15

to differentiate between the three scenarios from the values of T1, T2, T3,
and T4. Therefore, rather than wrongly calculating the clock offset, a sender
node can only choose to abort and rerun the protocol, after having detected a
pulse-delay attack.

4.6 Variation of SPS for Fast Hardware

Applying and implementing the SPS protocol on Mica2 motes has proven to
be feasible and realistic. In particular, MACs can be computed on the fly and
attached to a message while the message is being sent. This is necessary be-
cause the time-stamp inserted on the physical layer must indicate the exact
transmission time of a certain bit in the message and the MAC can only be
generated after the time-stamp has been inserted into the message. While
Mica2 motes transmit with a 78.5 kbps bit rate, other existing types of motes
can handle higher data transmission rates. This may render on-the-fly MAC
computations infeasible, as was pointed out by Sun et al. [2006b] for the ex-
ample of MicaZ motes (250 kbps bit rate). As a solution, the same authors
propose to use prediction-based time-stamping, anticipating the (constant) de-
lay to compute the MAC and adding this delay to the time-stamp.

Here, we propose two different approaches which eliminate the need for on-
the-fly MAC computations. First, the original SPS protocol can be modified
as follows: the MAC in message 2 does not contain any time-stamps (i.e., it
is replaced by MACKA B

[B, A , NA , ack]) while the MAC containing the time-
stamps (MACKA B

[B, A , NA, T2, T3, ack]) is sent in a third, delayed message.
The MAC sent in the third message does not have to be computed on-the-fly,
since its transmission and reception times are of no importance for the time
synchronization. With this modification, we keep the properties of the original
SPS protocol (message integrity, authenticity, and impeded impersonation as
node B through the MAC and the shared key; detection of pulse-delay attacks).
Only the time when A can verify the received time-stamps T2, T3 is delayed
to the arrival of the third message.

Second, continuing on this idea, we propose a new protocol for secure pair-
wise synchronization, inspired by distance-bounding techniques [Brands and
Chaum 1994]. In this protocol, the critical measurement of the message recep-
tion time performed by node A becomes independent of B’s message containing
the MAC. Consequently, the MAC does not have to be computed on the fly
and, hence, does not impose any requirements on the transmission bit rate
of the hardware. Our modified SPS protocol (E-SPS) is therefore hardware-
independent.

Enhanced SPS (E-SPS)

1. A(T1) → (T2)B: A , B, NA , sync

2. B(T3) → (T4)A: NB where T3 ≥ T2

3. B → A: B, A , NA , ack, T2, T3, NB,

MACKA B
[B, A , NA , ack, T2, T3, NB]

4. A calculates delay d = (T2−T1)+(T4−T3)
2

If d ≤ d∗ then δ = (T2−T1)−(T4−T3)
2

else abort

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

23: 16 · S. Ganeriwal et al.

In our protocol, B’s message that is used for the time measurement consists
only of a fresh nonce NB (2). NB is then authenticated and integrity checked in
a follow-up message (3) which may arrive with an arbitrary (though limited)
delay. Since the content of message 2 does not depend on the time T3 when it
was sent (as opposed to SPS), there are no requirements on the used hardware
for sending message 2. Note that even though T1 < T2 < T3 < T4, A obtains
the time-stamps in the following order: T1, T4, T2/T3. As in SPS, the integrity
and authenticity of the messages are verified by using KA B and a MAC. As
before, successful replay attacks are precluded by the nonces NA and NB and
pulse-delay attacks by the comparison with the maximal delay d∗. Preplay
attacks, in which the attacker would send a message 2 before B’s response, do
not succeed because the attacker will be unable to provide a legitimate MAC
for the preplayed nonce. Note that unlike in distance-bounding protocols, there
is no need to use commitments in E-SPS, since the nodes mutually trust each
other and share a secret key.

For the type of hardware we have been considering (Mica2), E-SPS achieves
at least the same level of accuracy and end-to-end delay precision as the SPS
protocol because both protocols agree in the structure of the synchronization,
but the messages used in the time measurement of E-SPS are derived by faster
operations.

5. GROUP SYNCHRONIZATION

The synchronization primitive in a sensor network should be able to provide
additional services over and above the basic primitive of synchronizing a pair
of neighboring nodes. Various sensor network applications require groups of
nodes to agree on a common (e.g., global) time reference. Some notable appli-
cations are (1) Object tracking: The size, shape, direction, location, or velocity
of objects is determined by fusing proximity detections, done at the same time
from sensors at different locations. (2) Consistent state updates: The current
state of an object is most accurately determined by the node that has seen the
object most recently. This requires all the nodes in the cluster to have the
same notion of time. (3) Duplicate detection: The time of an event helps nodes
in the cluster determine if they are seeing two distinct real-world events, or
a single event seen from two vantage points. If they are indeed seeing the
same event, they can further fuse their observations. All these applications
will function accurately only if the synchronization error between nodes in a
group is bounded. Moreover, group synchronization can be equally beneficial
for network-wide synchronization (see Section 7).

In this section, we present a protocol for secure time synchronization of a
group of nodes, termed Secure Group Synchronization (SGS). We will show
that SGS is resilient to both internal and external attackers. First, we present
a simpler version of SGS that is only resilient to attacks from external
adversaries. We have named this protocol Lightweight Secure Group Synchro-
nization (L-SGS). As we will describe, L-SGS is not resilient to internal at-
tacks resulting from compromised or faulty nodes. Afterwards, we propose a

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

Secure Time Synchronization in Sensor Networks · 23: 17

mechanism which allows the synchronization of nodes even in the presence of
internal attackers. That mechanism is based on the concepts of the Byzantine
agreement [Lamport et al. 1982].

5.1 System Model

SGS is not bound to any specific group establishment or cryptographic pro-
tocol. Instead, the nodes establish memberships dynamically by running a
secure membership protocol which initializes their membership statuses and
maintains or updates them at runtime (changes may be due to lost and re-
covered nodes). This can be achieved by using a byzantine consensus protocol
for group agreement, such as Berman and Garay [1993] or Garay and Moses
[1998]. Note that nodes may be part of several groups in parallel since their
goal is to synchronize on the same time reference. Although these protocols
cause an overhead in terms of rounds and message sizes (e.g., polynomial-size
messages and m+ 1 rounds to resist up to m byzantine nodes per group [Garay
and Moses 1998]), they are executed only occasionally during the lifetime of
the sensor network (e.g., when the topology changes). In other words, they
occur with a frequency much below the synchronization frequency.

Based on the established groups, SGS is initiated repeatedly to reach and
keep a uniform time reference. We will show that (1) any node in the group
can initiate SGS whereupon all other nodes react and that (2) the end ac-
curacy is independent of the order in which nodes send messages to each
other. We assume that all group nodes are in a single broadcast domain (same
neighborhood).

We require the following two properties from the underlying cryptographic
library: (1) Every node in the group should be able to authenticate the mes-
sages received from other nodes, and (2) it is infeasible to impersonate and
send valid messages on behalf of some other node. We achieve this by at-
taching message authentication codes to the packet that are generated using
symmetric pairwise secret keys. As we will show, this requires the nodes to
attach several MACs in every packet, one corresponding to every node in the
group. Since we rely on on-the-fly MAC computations, we note that the proto-
cols described below only work for small groups (∼15 nodes). Although there is
no logical bottleneck in the protocol that would prevent its scalability to hun-
dreds of nodes, the computational complexity and time requirements make it
impractical for large groups. In that case, an asymmetric cryptographic li-
brary or a modified algorithm following the idea indicated in Section 4.6 (i.e.,
delaying MACs to a separate message) would be better options.

5.1.1 Notation. We denote the number of nodes in the group by N and
represent the sending time of the packet at node i by Ti. Tij represents the
time at which the packet broadcasted by node i is received at j. Notice that
these times are measured by two different clocks. Ti is measured in the local
clock of node i (Ci) whereas Tij is measured by the local clock of node j (C j). We
represent the offset (or the difference between the local clocks) between the
two nodes by δij. The delay for the packet transfer from i to j is represented by

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

23: 18 · S. Ganeriwal et al.

dij. Although this delay follows the same distribution for every pair of nodes,
we add the subscripts for clarity.

5.2 Lightweight Secure Group Synchronization (L-SGS)

In this section, we describe a lightweight secure group synchronization
protocol.

Lightweight Secure Group Sync. (L-SGS) ∀(i, j) ∈ (1, ..., N), j 6= i:

1. Gi(Ti) → (Tij)∗ : Gi, Ni, sync

2. Gi(T
′
i) : m = T ji, N j, G j

j=1,...,N; j6=i

: M = MACKij
[Gi, T ′

i, ack, T ji, N j, G j]
j=1,...,N; j6=i

Gi(T
′
i) → (T ′

ij)∗ : Gi, T ′
i, ack, m, M

3. Gi : compute dij = ((Tij − Ti) + (T ′
ji − T ′

j))/2

if dij ≤ d∗ then δij = 1
2
((Tij − Ti) − (T ′

ji − T ′
j)) else abort

4. Gi : Compute Cij = Ci + δij

5. Gi : Compute Ci
g = median(Ci, [Cij]

j=1,...,N; j6=i)

In this protocol, every group member broadcasts a packet containing its ID
Gi and a challenge nonce Ni (step 1). This is called the challenge packet from Gi,
which will be received by all neighboring nodes *. The exchange of these pack-
ets can be triggered by any node sending the first challenge, the other nodes in
the group react in a random order. After the nodes have received Nmin ≤ N−1
replies of their group members (note that they might not get N−1 replies due
to packet losses or compromised nodes not participating in step 1), the nodes
begin with step 2 of the protocol, in which each member broadcasts a response

packet. This packet contains up to N−1 triples (T ji, N j, G j), one for each G j

involved in step 1. It contains the receipt time of the challenge packet from G j

(T ji), the nonce of G j (N j), and the node ID (G j) respectively. It also contains up
to N−1 MACs, one for each pair (Gi, G j), which allows each receiver node G j to
authenticate the response packet that was sent by Gi. In addition, Gi also adds
the sending time T ′

i of the response packet, both to the payload and to the MAC
calculation. In step 3, each node Gi independently performs a threshold ver-
ification on each computed delay dij, corresponding to the challenge-response
with node G j. If the calculated end-to-end delay exceeds the maximal delay, we
abort the offset calculation due to the pulse delay introduced by the external
attacker. The first three steps are reminiscent of the sender-receiver synchro-
nization; we establish pairwise relationships between multiple senders and
multiple receivers simultaneously using the broadcast property of the wireless
communication medium.

In step 4, each node Gi estimates the clock of all the other nodes in the
group using pairwise offsets δij and its local clock Ci. This estimation of the
local clock of node G j by node Gi is represented as Cij. Finally, the group clock
is calculated by taking the median of all these estimated local clocks and one’s
own local clock. We represent the estimation of the group clock by node Gi

as Ci
g.

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

Secure Time Synchronization in Sensor Networks · 23: 19

We demonstrate the efficacy of this procedure by a representative example.
We consider a group of 4 nodes with the following local clocks: C1 = 10, C2 = 20,
C3 = 30 and C4 = 40. We assume a nonmalicious environment so that node 1
calculates the clock offsets as: δ12 = 10, δ13 = 20 and δ14 = 30. Using these
pairwise offsets, node 1 will calculate the estimations of the local clocks as:
C12 = 20, C13 = 30, C14 = 40, and finally the group clock as the median of
[10, 20, 30, 40], i.e., C1

g = 25. Similarly node 2 will calculate the offsets as:
δ21 = −10, δ23 = 10 and δ24 = 20, the local clocks as: C21 = 10, C23 = 30,
C24 = 40, and the group clock as the median of [10, 20, 30, 40], i.e., C2

g = 25.

Note that C1
g = C2

g.

5.2.1 Complexity. Each node transmits two packets in L-SGS – a challenge
and a response packet. Hence, the total number of transmitted messages is 2N.
Albeit the response packet size is significantly larger than other messages, it
has no impact on the accuracy of the time stamping as we are time-stamping
the SFD bytes at both the transmitter and receiver. The only design challenge
is the computation of N−1 on-the-fly MACs. As mentioned before, if N is large,
the MACs can either be delayed (like in E-SPS) or a public key based crypto-
graphic library can be used instead. In this latter case, each node attaches only
one MAC in the response packet, which is generated using the private key of
the node. All the receiver nodes can verify the authenticity of the packet by
using the public key of the node.

5.2.2 Synchronization Precision. Following Section 4.2.1, the synchroniza-
tion error in the estimation of the local clocks Cij follows a Gaussian distribu-

tion given by N(0, σ/
√

2). Thus, the error in the estimation of the group clocks
Ci

g also follows a Gaussian distribution given by N(0, σ/
√

2). The synchroniza-
tion error ǫg is the difference in the estimation of the group clocks. There-
fore, it follows a Gaussian distribution given by N(0, σ). However, unlike SPS,
L-SGS takes a considerable amount of time to finish; there are 2N messages
being communicated on the channel. As a result, the offset between a node’s
clock at the end of the protocol might be different to the one at the beginning
of the protocol because the node clocks may drift while SGS is running. To
take this into account, we add an additional term to the synchronization er-
ror, ǫg ∼ N(0, σ) + θ (N). We note that the time needed to execute L-SGS, and
hence the magnitude of θ (N), is directly proportional to the cardinality N of the
group. Analyzing the behavior of θ (N) is a challenging problem and is beyond
the scope of this article. In one of our previous research efforts [Ganeriwal
et al. 2003], we calculated the average relative clock drift on Mica2 motes to
be less than 1ppm, i.e., 1µs per second, which allows us to hypothesize that
L-SGS will achieve a synchronization precision within a few microseconds for
reasonable group sizes.

5.2.3 Internal Attackers. This lightweight version of SGS can successfully
prevent pulse-delay attacks, using the same threshold mechanism that was
described for SPS. However, it is not resilient to attacks from compromised
nodes within the group. This can be seen by looking at the contents of the

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

23: 20 · S. Ganeriwal et al.

response packet. The protocol relies on node Gi to accurately report the time
T ji, at which the challenge packet was received from node G j in the first step
of the protocol. There is no mechanism to cross-check the reported times and
hence, a compromised node Gi can skew the offset δ ji, calculated by a node
G j, by reporting an arbitrary value of T ji. As a consequence, the local clock
Ci of node Gi will be estimated differently by any node G j and, hence, the
medians calculated by the nodes will differ. We note that the attacker would
also have to skew the value of T ′

i accordingly, so that the calculated end-to-end
delay is within the maximal delay. Even after altering a single clock offset, the
internal attacker can make the synchronization error between the good nodes
unbounded.

We would like to point out that this vulnerability of L-SGS to internal at-
tackers is not an artifact of choosing the median as the aggregating function.
Note that the median is more robust than a simple average aggregator and is
in fact the best aggregator for an R

n → R aggregate. Instead of focusing our ef-
forts on analyzing the tradeoffs associated with better aggregation modalities,
we have developed a solution whose efficiency is not affected by the underlying
aggregation modality.

5.3 Secure Group Synchronization (SGS)

In this section, we extend the lightweight secure group synchronization pro-
tocol to make it resilient to internal adversaries. L-SGS is not secure
because nodes are not able to estimate the local clock of the internal adver-
sary accurately. However, if a node does not cooperate, it is impossible for
the rest of the group nodes to accurately estimate its local clock. An inter-
esting point to note is that the group synchronization does not fail because
nodes have a wrong estimate about the clock of a malicious node, but because
their estimates are different. If we manage to ensure that the local clock
estimates are consistent, we will be able to achieve accurate group synchro-
nization. Based on this insight, we have developed a protocol that adapts the
Byzantine agreement protocol proposed by Lamport in the context of clock syn-
chronization [Lamport and Melliar-Smith 1985] and process synchronization
[Lamport et al. 1982].

The modified protocol is executed as follows: Similar to the previous pro-
tocol, each node Gi calculates the pairwise offsets with all other nodes in the
group and adds them to a set, termed as the offset-set Oi for node Gi. In the
fourth step of the protocol, each node broadcasts its offset-set to all other nodes
in the group. The integrity of this message is protected by attaching N−1
MACs, using the same mechanism as in the response packet. These MAC cal-
culations do not have to be done on-the-fly as we are not time-stamping the
packet. In the fifth step, each node runs the SOM(⌊(N − 1)/3⌋) algorithm mul-
tiple times, once for every node G j in the group, to calculate the estimation of
the local node clocks, Cij. This algorithm is based on the Byzantine agreement
protocol, and we will explain it in detail in the next section. Finally, in step 6,
each node calculates the group clock Ci

g by taking the median of the estimated
local clocks. Essentially we have replaced the step 4 of the previous section

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

Secure Time Synchronization in Sensor Networks · 23: 21

with two steps, 4 and 5. We will demonstrate how this makes SGS resilient to
internal adversaries.

Secure Group Synchronization (SGS) ∀(i, j) ∈ (1, ..., N), j 6= i:

1. Gi(Ti) → (Tij)∗ : Gi, Ni, sync

2. Gi(T
′
i) : m = T ji, N j, G j

j=1,...,N; j6=i

: M = MACKij
[Gi, T ′

i, ack, T ji, N j, G j]
j=1,...,N; j6=i

Gi(T
′
i) → (T ′

ij)∗ : Gi, T ′
i, ack, m, M

3. Gi : compute dij = 1
2
((Tij − Ti) + (T ′

ji − T ′
j))

if dij ≤ d∗ then δij = 1
2
((Tij − Ti) − (T ′

ji − T ′
j)) else abort

Oi = Oi ∪ δij

4. Gi : M = MACKij
[Gi, Oi]

j=1,...,N; j6=i

Gi → ∗ : Gi, Oi, M

5. Gi : Run the SOM(⌊(N − 1)/3⌋) algorithm to compute Cij

6. Gi : Compute Ci
g = median(Ci, [Cij]

j=1,...,N; j6=i)

5.3.1 Byzantine Agreement Algorithm. The SOM algorithm is based on the
OM [Lamport et al. 1982] and the COM algorithm [Lamport and Melliar-Smith
1985] in the context of process and clock synchronization respectively. SOM,
which stands for Secure time synchronization OM, is a modified version that
suits our system settings. While both OM and COM involve multiple rounds
of message exchanges between the participating nodes, in SOM we have re-
placed the multiple rounds of message exchanges by multiple rounds of com-
putations at every node. Note that communicating 1 bit consumes around
the same amount of energy that is needed to execute 1000 computations at a
typical sensor node. Thereby, this design choice is apt for sensor networking
systems.

SOM is a recursive algorithm that involves multiple rounds to compute Cij.
In SOM, each node uses other group members to compute Cij. Therefore, we

add additional indexes to the notation for clarity. We use Ck,r
ij to represent the

local clock of node G j estimated by node Gi using the node Gk in the group after
the rth round of running the SOM algorithm. Clearly, Gk cannot be equal to G j,
although it can be equal to Gi. Further, we use the parameter m to represent
the maximal number of internal attackers in the group. The pseudo code for
the SOM algorithm run by node Gi is as follows:

SOM(m) to estimate Cij:

Cij = median[(N-1) executions of SOM(m) to estimate Ck,m
ij |

(i, j, k) ∈ (1, ..., N), k 6= j, j 6= i]

SOM(1) to estimate Ck,1
ij :

Ck,1
ij = Ci + δik + δkj

SOM(m) to estimate Ck,m
ij for m > 1:

Ck,m
ij = δkj + median[(N-2) executions of SOM(m-1) to estimate Ct,m−1

ik |
(i, j, k, t) ∈ (1, ..., N), t 6= k 6= j, j 6= i]

In the following, we demonstrate the SOM algorithm by means of examples
and then analyze its properties in terms of resilience to attackers, complexity,
and synchronization precision.

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

23: 22 · S. Ganeriwal et al.

5.3.2 Example. We reconsider the same representative example of 4 nodes
with local clocks Ci = 10i. Assume that node 4 is malicious (m = 1) and that
it wrongly propagates the receive times in the response packet, so that other
nodes in the group calculate the offsets as: δ14 = α, δ24 = β, and δ34 = γ . All the
other clock offsets are calculated accurately.

We go through the SOM algorithm as executed by nodes 1 and 2 to estimate
C14 and C24, respectively. They compute C14 = median[C1,1

14 , C
2,1
14 , C

3,1
14] and

C24 = median[C1,1
24 , C

2,1
24 , C

3,1
24]. By running SOM, the following values will be

calculated:

C
1,1
14 = C1 + δ11 + δ14 = 10 + 0 + α C

1,1
24 = C2 + δ21 + δ14 = 20 + (−10) + α

C
2,1
14 = C1 + δ12 + δ24 = 10 + 10 + β C

2,1
24 = C2 + δ22 + δ24 = 20 + 0 + β

C
3,1
14 = C1 + δ13 + δ34 = 10 + 20 + γ C

3,1
24 = C2 + δ23 + δ34 = 20 + 10 + γ

C14 = median(10 + α, 20 + β, 30 + γ) C24 = median(10 + α, 20 + β, 30 + γ)

As can be observed, C14 = C24 and hence, both nodes 1 and 2 reach a consistent
estimate about the local clock of node 4. We note that C∗4 does not reflect the
right clock of node 4. Our aim is not to accurately estimate the clock of node
4, but to ensure that the honest nodes in the group reach a consensus. For
completion, we note down the other local clock estimates of node 1 and node 2:

C12 = median(20, 20, 10 + α − β) = 20; C13 = median(30, 30, 10 + α − γ) = 30

C21 = median(10, 10, 20 + β − α) = 10; C23 = median(30, 30, 20 + β − γ) = 30

As can be seen, all the local estimate clocks of node 1 and node 2 are the
same. Also, C1 = C21 and C12 = C2. Therefore, C1

g = C2
g, and hence nodes 1 and

2 are able to derive a common group clock, even in the presence of an internal
adversary.

5.3.3 Recursion. In order to understand the need for a recursive algorithm,
we consider a representative example of 7 nodes, where nodes 6 and 7 have
been compromised. We will show that nodes 1 and 2 will not be able to reach a
consistent estimate of C17 and C27 by running the SOM(1) algorithm. However,
the recursive algorithm, SOM(2) will be able to remove this discrepancy.

Assume that node 6 and 7 wrongly propagate the reception times in the
response packet, so that nodes 1 and 2 calculate the offsets as: δ16 = α6, δ17 = α7,
δ26 = β6, and δ27 = β7. We now demonstrate the inaccuracy of the SOM(1)
algorithm:

C17 = median[C1,1
17, C

6,1
17]; C27 = median[C1,1

27, C
6,1
27]

C
6,1
17 = C1 + δ16 + δ67 = 10 + α6 + δ67; C

6,1
27 = C2 + δ26 + δ67 = 20 + β6 + δ67

As can be noted, C
6,1
17 6= C

6,1
27 and, hence, C17 and C27 may be unequal. Similarly,

the nodes will have inconsistent estimates of C
7,1
i6 and, hence, of Ci6.

The recursive version of SOM allows us to remove this inconsistency by first
making nodes 1 to 5 reach a consistent estimate on C

6,1
i7 and, then making them

use it to estimate Ci7.

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

Secure Time Synchronization in Sensor Networks · 23: 23

5.3.4 Internal Attackers. SOM requires the parameter m, the number of
internal attackers in the group, as input. However, a tricky question is how to
estimate this value of m? Note that the identities or number of faulty nodes are
not known before the execution of the algorithm. We only know the cardinality
N of the group. In absence of any prior knowledge and to avoid overloading
the system with any detection protocol, we devise a strategy to handle the
worst-case scenario. We choose m to be equal to ⌊(N − 1)/3⌋, the maximal
number of attackers accepted by OM(m) and COM(m) in [Lamport et al. 1982].
SOM(⌊(N− 1)/3⌋) will be able to handle at most ⌊(N− 1)/3⌋ adversaries. If the
number of internal attackers is bigger, no version of SOM can safeguard SGS
and hence, the choice of m is a nonissue. If the number of internal attackers
is smaller, we will be unnecessarily running some extra rounds of computation
during the execution of SOM. However, since over-execution of SOM does not
affect its accuracy, this choice of m is still justified.

THEOREM 5.1. For any m, SOM(m) satisfies a correct time agreement among

all noncompromised nodes if more than 3m nodes take part in the protocol and

at most m out of them are faulty.

PROOF. We develop a proof for this theorem based on the proofs of OM
and COM [Lamport and Melliar-Smith 1985]. We start with the base case
of SOM(1) and then develop the proof using induction on m. Assuming there
is one malicious node (m = 1), the number of honest nodes needs to be greater
than 3m, i.e., at least 4, for the protocol to yield correct node synchronization.
Let us take the worst-case scenario of 4 nodes. The malicious node can at most
affect 1 out of 3 possible values of C

k,1
ij for a node j, calculated by node i. Since

the majority of the values are correct, a correct median will be calculated.
Now we assume that SOM(m−1) is correct for m−1 and show that it remains

correct for m, where m < N
3 . The recursion causes SOM(m) to run (N−1) exe-

cutions of SOM(m) to estimate C
k,m
ij where each run invokes (N−2) executions

of SOM(m) to estimate C
t,m−1
ik . Since the algorithm is by assumption correct for

SOM(m−1) and all correct nodes hold the same vector of values for all other
honest nodes (though they do not know which ones are honest), the median of
the values C

t,m−1
ik will be correct. Then, on the upper recursion depth, out of the

(N−1) values C
k,m
ij , at most m will be incorrect, namely the ones where node

k is corrupted. Note that we only allow m nodes to be malicious. This means
a correct median will be calculated if the majority of all received values are
correct, i.e., N−1

3 ≥ m or N
3 > m.

5.3.5 Complexity. Each node transmits three packets in SGS—a challenge
packet, a response packet and finally a packet containing its offset-set. There-
fore, the total number of messages transmitted in SGS is 3N. SOM(m) needs
m iterations to remove the effect of m malicious nodes. We note that the num-
ber of computations needed are not linear but exponential in the number of
rounds. The recursion terminates at the kth round, when m − k = 1. Therefore,
the total number of computations are of the order of Nm. In our case, we fix

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

23: 24 · S. Ganeriwal et al.

m to be equal to ⌊(N − 1)/3⌋ and hence, the computation complexity of SGS is
O(N⌊(N−1)/3⌋).

5.3.6 Synchronization Precision. In Lamport and Melliar-Smith [1985],
Lamport proves that the maximum synchronization error of the COM(m)
algorithm is always bounded by (6m + 4)ǫ. In his notation, ǫ refers to the
accuracy with which pairwise nodes can derive the clock offsets. In our sce-
nario, we have shown that this error follows a Gaussian distribution given by
N(0, σ). There exists no analysis of the average performance of the COM(m) or
the OM(m) algorithm or on the conditions in which this worst-case scenario is
attained, which can be mainly attributed to the complexity of the COM and OM
algorithms. In order to do a first-order analysis, we assume that the average
error is equal to the maximum error and hence, the synchronization precision
of SGS follows a Gaussian distribution given by N(0, σ (6⌊(N − 1)/3⌋ + 4)). Fi-
nally, we add a term to the error in order to take into account the drift of the
clocks while running the SGS algorithm. Therefore, the synchronization error
is given by ǫg ∼ N(0, σ (6⌊(N − 1)/3⌋ + 4)) + θ (N).

5.3.7 Maximum Attacker Impact. The maximum attacker impact is also
bounded by (6⌊(N−1)/3⌋+4)ǫ, where ǫ refers to the maximum attacker impact
on the derived pairwise clock offsets among the honest nodes in the group. As
derived in the previous section, the maximum pulse delay that can be intro-
duced by an attacker is 12σ , and hence the maximum clock difference that can
be introduced by the attacker is equal to (6⌊(N − 1)/3⌋ + 4)12σ .

5.3.8 Related Work. Group synchronization has been a widely researched
problem in the traditional computing domain. Although Lamport started it
with the COM algorithm [Lamport and Melliar-Smith 1985], several results
have been published that can achieve better results than the COM algorithm
on the metrics of error or complexity. In Lundelius and Lynch [1984], the
COM algorithm is extended to achieve a synchronization precision that is in-
dependent of the number of processes involved. In Srikant and Toueg [1987],
the authors propose an algorithm that does not only achieve better accuracy
than the COM algorithm but also comes close to achieving optimal synchro-
nization. Both these algorithms are based on one-way broadcast primitives
where a group node starts the algorithm by broadcasting a message. After
hearing this message, all the other nodes broadcast a response. After a few
more rounds of message exchanges the nodes reach a consensus.

The problem with this class of algorithms, which are based on one-way
broadcast primitives, lies in their incapability of handling pulse-delay attacks.
Typically, the efficacy of these algorithms is proven (as in Lundelius and Lynch
[1984] and Srikant and Toueg [1987]) by assuming that the time for a synchro-
nization round is bounded, i.e., the message broadcasted by a node will reach
all receivers within a fixed amount of time. Although this is valid for messages
exchanged by two nodes in a wired or a wireless nonmalicious setting, it is
not valid in environments, where an external attacker can increase the recep-
tion time of the message at selected nodes (pulse-delay attack). As a result,

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

Secure Time Synchronization in Sensor Networks · 23: 25

different nodes get an inconsistent notion of the round of the algorithm, which
will result in an inaccurate estimation of the group clock.

Several other algorithms, such as Halpern et al. [1984]; Mahaney and
Schneider [1985]; Dolev et al. [1986]; Sun et al. [2005; 2006a], have focused
on the problem of periodic resynchronization of group nodes. The problem is
formulated as one of deciding the time interval ζ , and the algorithm that is run
periodically for resynchronizing a group of nodes within a specified precision
ǫ, given the fact that the nodes start off with clocks that are roughly synchro-
nized within ǫ. This assumption is not valid for our system model, where we
try to achieve synchronization between clocks that might be arbitrarily apart
from one another at the onset of the algorithm. Besides, our objective is not
to devise a periodic resynchronization algorithm but to achieve instantaneous
group consensus between participating nodes.

5.4 Performance Evaluation

In this section, we will first demonstrate the efficacy of SGS through simula-
tions. We will then show the feasibility of implementing SGS on sensor net-
working systems by providing a prototype implementation on Mica2 motes.
We will analyze the time requirements needed to execute SGS and report syn-
chronization error results that were obtained by running real experiments on
a group of motes.

5.4.1 Simulation Study. Our first objective was to verify the efficacy of
the SOM algorithm in preventing attacks from internal adversaries. For this
we implemented the algorithm in the C programming language and tested its
efficacy on a desktop computer. We considered a system of 14 nodes where
the local clock of node i was set to Ci = i · 10. Nodes numbered 11 to 14 were
modeled as adversarial nodes. The internal attack was modeled by adding a
random value to the correct offset between a good and a compromised node as
follows (i ∈ (1, ..., 10), j ∈ (11, 14)):

δij + = (5 · i) + (10 · j) + random [0, 1000].

Figure 4a shows the value of the local clock of the compromised node 14 as
estimated by the nodes 1, 2, 4, and 8 after each iteration of SOM. As can be
observed from the figure, the nodes have completely different views of the lo-
cal clock C14 at the beginning, but they are able to reach a consensus after four
iterations. Note that we ran the SOM algorithm independently for every node.
Thus, without any explicit cooperation or message exchange, the nodes were
able to reach a consensus about C14. According to our assertion and since there
are 14 nodes (N = 14), the nodes will require at least 4 rounds (m= ⌊(N− 1)/3⌋)
to reach a consensus. This is indeed the case, as can be observed from
Figure 4a. Any fewer rounds of SOM (<4) are inadequate. Although a subset
of nodes can reach a consensus (nodes [1, 2] and [4, 8] agree after three rounds
of SOM), a complete consensus can only be guaranteed after running the com-
plete four rounds of SOM. Furthermore, overrunning SOM (fifth round) does
not have any impact on its accuracy.

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

23: 26 · S. Ganeriwal et al.

Fig. 4. Simulation of SOM 4(a) and implementation of SGS on Mica2 motes 4(b).

We ran the implementation of SOM for several different values of N, varying
from 4 to 30. We have not come across a single experimental run in which
there was a discrepancy between the group clocks derived by the good nodes,
provided that the number of adversarial nodes were less than one-third of the
group strength.

5.4.2 Time Complexity on Motes. In this section and the next, we discuss
the experimental results that were obtained from the prototype implemen-
tation of SGS (including SOM) on Mica2 motes. This implementation was
done under the SOS environment. Our first objective was to profile the time
needed by a mote to execute the SOM algorithm. This was done using Avrora
[Titzer et al. 2005]. Avrora provides a cycle-accurate simulation of the AVR
microcontroller, allowing real programs to be executed with precise timing.
In addition, it provides analysis and profiling tools to gauge the cycle count
of the programs. Avrora’s most interesting feature is that the same embed-
ded code running on Mica2 motes can be directly fed into the simulator, thus
eliminating experimental errors introduced in moving from real-world settings
to simulations.

Figure 4b plots the time taken by a mote to run the SOM algorithm with
respect to the group strength (N). Note that m is always set to ⌊(N − 1)/3⌋.
Avrora provides a flexible framework to set up profile points at any place in the
code. Using this profile points, the accurate cycle count can be derived for any
snippet of code. In our scenario, the profile points were set to the beginning and
the end of the SOM algorithm. Afterwards, the time measurement was derived
by multiplying this cycle count with the frequency at which the atmega128
microcontroller runs in the Mica2 motes (∼ 8MHz). As can be observed from
Figure 4b, SOM takes less than a second to run in scenarios where the group
size is below 10. Even for higher group sizes, SOM takes few seconds (< 10 s)
to run. A keen observation regards the nature of the graph which can be best
modeled as piecewise linear, with transition points at (N−1) mod 3 = 0, i.e., 4,
7, 10, etc. At these transition points, the number of SOM rounds increases.

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

Secure Time Synchronization in Sensor Networks · 23: 27

Fig. 5. Performance of SGS on motes.

Table III. Statistics of the Synchronization Error in SGS

Average error 47.13 µs

Maximum error 130 µs

Minimum error 1 µs

5.4.3 Synchronization Precision on Motes. We next carried out a set of
experiments on Mica2 motes to gauge the synchronization error of SGS. The
experimental setup consists of five motes, numbered 1 to 5. In practice, SGS
can be started by any random node, following a group establishment. In our
scenario, we designated node 1 to be the initiator at all times for ease of ex-
perimentation. Each node ran the SGS algorithm independently. Thus, it first
broadcasts the challenge packet, waits for some time to receive the challenge
packet from all the other nodes, broadcasts the response packet, waits to re-
ceive the response packet from all the other nodes, calculates the pairwise
offsets and then broadcasts its offset-set. Thereafter, each node executes the
SOM algorithm independently to derive the group clock.

We configured mote 4 to be the internal attacker. Its time-stamping li-
brary was modified to report arbitrary time stamps, resulting in an inaccurate
and inconsistent calculation of the pairwise offset by the other nodes. After
the completion of the SGS algorithm, as indicated by the LEDs at the motes,
mote 5 was used to trigger an external interrupt. The three remaining motes
reported the triggering time of this external interrupt, i.e., added the clock off-
set with the group clock to its local clocks, resulting in times C1

g, C2
g, and C3

g.
The synchronization error was calculated by the difference in these reported
times.

We conducted 10 independent runs with a given experimental setup. Note
that each experiment gives us three readings of the synchronization error,
‖C1

g − C2
g‖, ‖C2

g − C3
g‖ and ‖C1

g − C3
g‖. We repeated the whole experiment with

five different setups, either by using new motes or by changing the identity
of the adversarial nodes. Figure 5 plots the synchronization error in these
50 independent runs, each of the three fractioned bars representing one error
reading. Table III summarizes the statistics. Even in the presence of an inter-
nal adversary, SGS was able to achieve an average synchronization precision
of around 50µs.

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

23: 28 · S. Ganeriwal et al.

6. SECURE PAIRWISE MULTI-HOP SYNCHRONIZATION

In the above sections, we have established clock offset relationships between
nodes that are in each other’s communication range. In this section, we present
protocols that enable distant nodes, multiple hops away from each other, to es-
tablish pairwise clock offsets. We assume that two sensors can obtain sets of
communication paths between each other through a priori knowledge of the
network topology. This information can be obtained either by topology discov-
ery [Deb et al. 2002] or by routing information [Deng et al. 2003]. The precision
achieved by the multi-hop protocols depends on the accuracy of the topology
information.

6.1 Secure Simple Multi-hop Synchronization (SSM)

The SSM protocol is a simple extension of the SPS protocol, in which a sender
A synchronizes to a receiver B with the help of intermediate forwarding nodes.
The intermediate nodes exchange messages but do not synchronize actively.
The shortest path between these two nodes requires n hops, through the nodes
{Gi}n−1

i=1 .

Secure Simple Multi-hop Synchronization (SSM)

1. A(T1) → G1 → . . . → Gn−1 → (T2)B: A , B, NA , sync

2. B(T3) → G1 → . . . → Gn−1 → (T4)A:

B, A , NA , T2, T3,ack, MACKA B
[B, A , NA, T2, T3,ack]

3. A calculates delay d = (T2−T1)+(T4−T3)
2

If d ≤ d∗
M then δ = (T2−T1)−(T4−T3)

2
else abort

Note that this protocol assumes that there is a secret key KA B between
nodes A and B, which are multiple hops apart. The expected end-to-end de-
lay d, computed at A, will be much longer in this protocol than in the one-hop
case. We take this into account by estimating a maximum expected end-to-end
delay by a larger value d∗

M ≫ d∗. Like in the one-hop time synchronization
protocol, the variance of d∗

M will determine how fine-grained the synchroniza-
tion is. It will also set an upper-bound on the attacker’s possible impact on the
synchronization precision.

The end-to-end delay in SSM is equal to the cumulative sum of the trans-
mission delays between each pair of nodes on the path and the MAC access de-
lays of the forwarding nodes. Here, the processing delays inside the nodes can
be neglected, as they are two-three orders of magnitude smaller than trans-
mission and MAC access delays. Although the transmission delays can be ac-
curately predicted from the radio speed, the MAC access times can be very
unpredictable, ranging from a few microseconds to a few minutes. Note that in
contrast to SPS the forwarding nodes introduce MAC access delays which are
unknown to the nodes being synchronized.

We performed an empirical study to find out the delay variations over multi-
ple hops in a typical sensor network. The results were obtained by simulations
using the Avrora simulator [Titzer et al. 2005]. We used the same embedded
code, network stack, time-stamping, etc., as in the previous section. Table IV

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

Secure Time Synchronization in Sensor Networks · 23: 29

Table IV. Statistics of the End-to-End Delay over Multiple Hops

Hop Maximum Minimum Average Delay Standard Deviation

Distance Delay (µs) Delay (µs) dM
avg (µs) σM (µs)

2 32,094 18,761 25,120 3,861

3 62,926 37,510 49,940 5,450

4 92,509 56,260 74,781 6,738

5 120,841 76,259 99,667 7,827

6 149,174 97,092 124,393 8,841

summarizes the results for a varying number of hops between the sender and
the receiver. The statistics were obtained from 1000 independent runs. It can
be observed from Tables I and IV that the average delay and the standard
deviation for the multi-hop case are significantly higher, by three orders of
magnitude, than the corresponding numbers over a single link. Moreover,
these two quantities depend highly on the intensity of the network commu-
nication traffic and the underlying channel conditions, thereby making it in-
feasible to estimate a consistent range for the expected end-to-end delay. Given
this flaw, we present a better solution in the next section.

6.2 Secure Transitive Multi-hop Synchronization (STM)

The Secure Transitive Multi-hop (STM) synchronization is essentially per-
formed as SPS pairwise synchronization along all the hops on the path from
the source to the destination. Without loss of generality, we present our solu-
tion using a representative example: A - G1 - G2 - B. In this example, node A
is trying to synchronize with node B; all intermediate nodes Gi also get syn-
chronized during the execution of STM. The shortest path between these two
nodes is three hops, through nodes G1 and G2. In STM, the proper scheduling
of node synchronization is achieved through an explicit notification by the re-
ceiver node to its upstream neighbor (sender node). Authentication is achieved
by attaching a MAC at the end of this notification packet. Unlike SSM, STM
requires only neighboring nodes (A and G1, G1 and G2, G2, and B) to share
pairwise secret keys, which is consistent with our system model. There is no
need for A and B to share a secret key.

Secure Transitive Multi-hop Synchronization (STM)

1. A → G1 → G2 → B: A , B, NA, sync

2. B : m1 = (B, G2, notify), M1 = MACKBG2
[B, G2, NA , m1]

B → G2 : B, G2, NA, m1, M1

3. G2 sync to B (SPS)

G2 : m2 = (B, G2, G1, notify), M2 = MACKG2G1
[G2, G1, NA, m2]

G2 → G1 : G2, G1, NA, m2, M2

4. G1 sync to G2 (SPS)

G1 : m3 = (B, G2, G1, A , notify), M3 = MACKG1 A
[G1, A , NA , m3]

G1 → A: G1, A , NA , m3, M3

5. A sync to G1 (SPS)

The resiliency of STM to external attackers is comparable to the one for SPS.
The SPS protocol is run on each link independently and, hence, the threshold

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

23: 30 · S. Ganeriwal et al.

verification is divided into stages. Every link is evaluated separately using
the same maximal delay d∗, as in SPS. Therefore, unlike SSM, STM does not
require the estimation of any additional delay parameter. We note that this
local verification gives some extra leverage to the attacker. She can introduce
multiple pulse-delay attacks on every link simultaneously; the cumulative sum
of these attacks can be huge. Note that the pulse delay introduced at every link
is at most 12σ as we run SPS on every link. Therefore, the maximum impact of
an external attacker for an N-hop network is 6σ N. Similarly, the synchroniza-
tion precision is given by ǫ ∼ N(0, Nσ/

√
2). Our earlier work [Ganeriwal et al.

2005] provides a detailed comparison between SSM and STM and proposes an-
other protocol, Secure Direct Multihop synchronization (SDM). SDM is based
on the primitive of diffusion, requires fewer packet transmissions than STM
and achieves the same synchronization precision in a non-malicious setting,
but is not resilient to external attackers as STM.

6.3 Resiliency to Internal Attackers

STM relies on the assumption that all intermediate nodes are trustworthy.
Even a single compromised node can bring detrimental effects to the function-
ality of the complete protocol. The precision of the multi-hop protocols relies
on the security of the used topology discovery or routing protocol. Attacks on
routing protocols in sensor networks and countermeasures are described in
Karlof and Wagner [2003]. Inherent to our protocols is that attacks compro-
mising one or several nodes may increase the shortest path length and, thus,
give the attacker time to tamper with the time synchronization. However, the
attacker cannot influence the maximal accepted delay (6σ N for STM), since
it is a network- and device-dependent variable, calculated for an undisturbed
network setting. Hence, the attacker cannot falsify the precision of the time
synchronization by more than the maximal delay.

A possible protection against compromised nodes can be achieved by in-
troducing redundancy. The two nodes calculate multiple values for the clock
offset across mutually disjoint paths. The sender node can then use outlier de-
tection mechanisms to discard the inconsistent values of the calculated clock
offset. Clearly, this relies on the assumption that only a minority of the paths
will be compromised. This solution is analogous to secure route discovery in
ad-hoc networks in the presence of compromised or faulty nodes within the
network [Yaar et al. 2003; Hu et al. 2002; Papadimitratos and Haas 2002].
Manzo et al. [2005] provides a detailed study of the impact of attacks from
compromised nodes on the multi-hop time synchronization accuracy in sen-
sor networks. The authors propose two candidate outlier detection schemes:
RANSAC and LMS. We argue that STM used in conjunction with RANSAC
or LMS provides an efficient solution for secure multi-hop synchronization in
sensor networks. STM would be run on every disjoint path to establish clock
offset relationships and then either RANSAC or LMS can be used for remov-
ing inconsistent clock offsets. Here, STM provides resiliency against external
attackers and RANSAC/LMS provide resiliency against internal attackers.

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

Secure Time Synchronization in Sensor Networks · 23: 31

7. DISCUSSION: NETWORK-WIDE SYNCHRONIZATION

Network-wide synchronization can be achieved in two stages: (1) A hierarchi-
cal tree is established in the network with a reference node as the root, and
(2) Pairwise synchronization is performed along the edges of this tree using
SPS. Every node synchronizes its clock to its parent in the tree. As a result,
eventually all nodes in the network get synchronized to the reference node,
which is the root of the hierarchical tree. Using SPS to perform pairwise syn-
chronization provides resiliency against external attackers. However, the more
challenging problem is to achieve secure network-wide synchronization when
a few nodes in the network have been compromised. In this scenario, a com-
promised node can mislead all the nodes in its subtree to a different notion of
time than the rest of the network.

In general, the problem of network-wide synchronization can be viewed as a
composition of several multi-hop synchronizations between the reference node
and the rest of the nodes in the network. Thereby, a similar solution of syn-
chronizing along multiple disjoint paths and then using outlier detection mech-
anisms such as RANSAC and LMS to remove inconsistencies can be used to
provide network-wide synchronization. We note that on a network level this
means that the reference node needs to maintain multiple trees simultane-
ously. In Sun et al. [2006a], authors specifically analyze the security flaws
of the existing protocols against internal adversaries and provide a solution
for secure network-wide synchronization. They provide a detailed simulation
study to understand the impact and the resiliency brought into the process of
time synchronization by establishing multiple disjoint paths between the ref-
erence node and other nodes in the network. We note that using SPS or STM
in conjunction with the schemes proposed by Sun et al. can provide a complete
solution for secure network synchronization in sensor networks.

An alternative approach for network-wide synchronization based on SPS is
the additional application of secure group synchronization (SGS). In order to
detect misled branches originating from compromised motes, the nodes can
run regular group synchronizations with the nodes of neighboring branches.
Group synchronizations are a dynamic and local means to detect incorrect syn-
chronizations in a branch. However, nodes (of correctly synchronized branches)
are at risk of being temporarily desynchronized (by nodes of faulty branches)
until the branch gets corrected. Countermeasures and remedies can be pro-
vided by primitives such as multiple base stations (representing multiple,
mutually synchronized reference nodes), multipath routing protocols, or ran-
domized multi-hop synchronizations with distant notes in the network. Using
hierarchy-dependent STM together with hierarchy-independent SGS combines
two approaches that are denoted as level-based clock synchronization and
diffusion-based clock synchronization in Sun et al. [2006a].

8. CONCLUSIONS

Existing solutions for time synchronization in sensor networks are not resilient
to malicious behavior from external attackers or to internally compromised
nodes: we showed the feasibility of a pulse-delay attack, where an attacker

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

23: 32 · S. Ganeriwal et al.

Table V. Summary of the Secure Time Synchronization Protocols (on Mica2 Motes). σ is the
Standard Deviation of the End-to-End Delay

Pair of Nodes Group Sync. (N nodes) Multi-hop

Protocol SPS E-SPS L-SGS SGS STM

Number messages 2 3 2N 3N 4N

Resiliency to - - No Yes No
internal attackers

Sync. Precision 3σ (10µs) 3σ 3σ (10µs) (6⌊ N−1
3 ⌋+4)3σ 3σ N

Attacker impact 12σ (40µs) 12σ 12σ (40µs) (6⌊ N−1
3 ⌋+4)12σ 6σ N

can introduce arbitrarily long delays in the packet propagation time, directly
affecting the achieved synchronization precision. We then proposed a suite of
protocols for secure pairwise (SPS) and secure group synchronization (SGS) of
nodes. We provided an in-depth analysis of these protocols, both in nonma-
licious and malicious settings, and implemented them on Mica2 motes. We
also carried out an extensive experimental study to gauge the synchronization
error performance of these protocols in a malicious setting by emulating exter-
nal and internal attackers.

SPS achieves the same synchronization precision on a pair of motes as the
insecure time synchronization protocols. Even under a pulse-delay attack, SPS
can keep the nodes in sync within 40µs. Furthermore, the attacker should be
equipped with sophisticated hardware to carry out a valid pulse-delay attack
against SPS. We showed that this is not feasible for a mote-class attacker.

SGS uses the SOM algorithm, motivated by Byzantine agreement protocols,
to achieve synchronization among a group of nodes even in the presence of in-
ternal attackers. We were able to synchronize a group of four motes within
50µs, even when one of them was emulated as an internal attacker. Further-
more, we showed the feasibility of using SGS for larger groups; the SGS algo-
rithm can complete within 10 seconds for groups of 10 nodes. The algorithm is
theoretically guaranteed to converge if less than one third of the nodes in the
group are faulty or compromised.

SPS can be extended to synchronize nodes that are multiple hops away from
each other (STM). The corruption of pairwise relationships between two dis-
tant nodes by an internal attacker en-route is protected by establishing multi-
ple relationships along disjoint paths; inconsistent readings are then discarded
using outlier detection mechanisms. To conclude, SPS, SGS, and STM provide
a secure time synchronization toolbox for sensor networks; their properties
being summarized in Table V.

ACKNOWLEDGMENT

The work presented in this article was supported in part by the Swiss National
Science Foundation under Grant 200021-116444 as well as by the ONR under
grant N00014-06-1-0253, by the U.S. ARL and the U.K. MOD under Agree-
ment Number W911NF-06-3-0001, by the NSF under award CNS-0520006,
and by the Center for Embedded Networked Sensing at UCLA. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily react the views of the listed funding

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

Secure Time Synchronization in Sensor Networks · 23: 33

agencies. The U.S. and U.K. governments are authorized to reproduce and dis-
tribute reprints for government purposes notwithstanding any copyright nota-
tion herein.

REFERENCES

BERMAN, P. AND GARAY, J. A. 1993. Cloture votes: n/4-resilient distributed consensus in t+1
rounds. Math. Syst. Theory 26, 1, 3–19.

BRANDS, S. AND CHAUM, D. 1994. Distance-bounding protocols. In Proceedings of the Workshop

on the Theory and Application of Cryptographic Techniques on Advances in Cryptology (EURO-

CRYPT’93). Springer-Verlag New York, Inc., Secaucus, NJ. 344–359.

CHAN, H., PERRIG, A., AND SONG, D. 2003. Random Key Predistribution Schemes for Sensor
Networks. In Proceedings of the IEEE Symposium on Research in Security and Privacy (SP’03).
IEEE Computer Society, 197.

DEB, B., BHATNAGAR, S., AND NATH, B. 2002. A topology discovery algorithm for sensor net-
works with applications to network management. In Proceedings of the IEEE CAS Workshop

(CCAS’02).

DENG, J., HAN, R., AND MISHRA, S. 2003. A performance evaluation of intrusion-tolerant routing
in wireless sensor networks. In Proceedings of the 2nd IEEE International Workshop on Informa-

tion Processing in Sensor Networks (IPSN’03).

DOLEV, D., HALPERN, J., AND STRONG, H. 1986. On the possibility and impossibility of achieving
clock synchronization. In J. Comput. Syst. Sci. 32, 230–250.

DOLEV, D. AND YAO, A. 1981. On the security of public key protocols. Tech. rep., Stanford, CA.

ELSON, J., GIROD, L., AND ESTRIN, D. 2002. Fine-grained network time synchronization using
reference broadcasts. SIGOPS Operat. Syst. Rev. 36, SI, 147–163.

ERGEN, S. C. AND VARAIYA, P. 2006. Pedamacs: Power efficient and delay aware medium access
protocol for sensor networks. IEEE Trans. Mobile Comput. 5, 7, 920–930.

ESCHENAUER, L. AND GLIGOR, V. D. 2002. A key-management scheme for distributed sensor
networks. In Proceedings of the 9th ACM Conference on Computer and Communications Security

(CCS’02). ACM Press. 41–47.

GANERIWAL, S., CAPKUN, S., HAN, C., AND SRIVASTAVA, M. 2005. Secure time synchroniza-
tion service for sensor networks. In Proceedings of the ACM Workshop on Wireless Security

(WSNA’05). ACM Press.

GANERIWAL, S., GANESAN, D., SIM, H., TSIATSIS, V., AND SRIVASTAVA, M. B. 2005. Estimat-
ing clock uncertainty for efficient duty-cycling in sensor networks. In Proceedings of the ACM

Conference on Networked Sensor Systems (SenSys’05). ACM Press.

GANERIWAL, S., KUMAR, R., AND SRIVASTAVA, M. B. 2003. Timing-sync protocol for sensor net-

works. In Proceedings of the ACM Conference on Networked Sensor Systems (SenSys’03). ACM
Press, 138–149.

GARAY, J. A. AND MOSES. 1998. Fully polynomial byzantine agreement for n > 3t processors in
t+1 rounds. SICOMP: SIAM J. Comput. 27.

GREUNEN, J. V. AND RABAEY, J. 2003. Lightweight time synchronization for sensor networks.
In Proceedings of the 2nd ACM international conference on Wireless sensor networks and appli-

cations (WSNA’03). ACM Press, New York, NY, 11–19.

HALPERN, J., SIMONS, B., STRONG, H., AND DOLEV, D. 1984. Fault-tolerant clock synchroniza-
tion. In Proceedings of the 3rd Annual ACM Symposium on Principles of Distributed Computing

(PODC’84). 89–102.

HAN, S., KUMAR, R., SHEA, R., KOHLER, E., AND SRIVASTAVA, M. B. 2005. A dynamic operating
system for sensor nodes. In Proceedings of the ACM Conference on Mobile Systems, Applications

and Services (MobiSys’05). ACM Press.

HOHLT, B., DOHERTY, L., AND BREWER, E. 2004. Flexible power scheduling for sensor net-
works. In Proceedings of the 3rd International Symposium on Information Processing in Sensor

Networks (IPSN’04).

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

23: 34 · S. Ganeriwal et al.

HU, Y.-C., PERRIG, A., AND JOHNSON, D. B. 2002. Ariadne: A secure on-demand routing proto-
col for ad hoc networks. In Proceedings of the ACM/IEEE International Conference on Mobile

Computing and Networking (MobiCom’02). ACM Press, 12–23.

KARLOF, C., SASTRY, N., AND WAGNER, D. 2004. Tinysec: A link layer security architecture for
wireless sensor networks. In Proceedings of the 2nd International Conference on Embedded Net-

worked Sensor Systems (SenSys’04). ACM Press, New York. 162–175.

KARLOF, C. AND WAGNER, D. 2003. Secure routing in wireless sensor networks: Attacks and
countermeasures. In Proceedings of the 1st IEEE International Workshop on Sensor Network

Protocols and Applications (SNPA’03). 113–127.

LAMPORT, L. AND MELLIAR-SMITH, P. 1985. Synchronizing clocks in the presence of faults.
In JACM, 32, 52–78.

LAMPORT, L., PEASE, M., AND SHOSTAK, R. 1982. The byzantine generals problem. In ACM

Trans. Program. Lang. Syst. 4, 382–401.

LIU, D. AND NING, P. 2003. Location-based pairwise key establishments for relatively static sen-
sor networks. In Proceedings of the ACM Workshop on Security of Ad Hoc and Sensor Networks

(SASN’03).

LUNDELIUS, J. AND LYNCH, N. 1984. An upper and lower bound for clock synchronization.
In Inform. Contr. 62, 190–204.

MAHANEY, S. AND SCHNEIDER, F. 1985. Inexact agreement: Accuracy, precision and graceful
degradation. In Proceedings of the ACM Symposium on Principles of Distributed Computing

(PODC’85).

MANZO, M., ROOSTA, T., AND SASTRY, S. 2005. Time synchronization attacks in sensor networks.
In Proceedings of the ACM Workshop on Security of Ad Hoc and Sensor Networks (SASN’05).
ACM Press.

MAROTI, M., KUSY, B., SIMON, G., AND LEDECZI, A. 2004. The flooding time synchronization
protocol. In Proceedings of the ACM Conference on Networked Sensor Systems (SenSys’04). ACM
Press, New York. 39–49.

MAROTI, M., SIMON, G., LEDECZI, A., AND SZTIPANOVTIS, J. 2004. Shooter localization in urban
terrian. In Comput. 37, 60–61.

PAPADIMITRATOS, P. AND HAAS, Z. 2002. Secure Routing for Mobile Ad Hoc Networks. In Pro-

ceedings of the Communication Networks and Distributed Systems Modeling and Simulation

Conference (CNDS’02).

PERRIG, A., CANETTI, R., TYGAR, J. D., AND SONG, D. 2002. The TESLA Broadcast Authentica-
tion Protocol. RSA CryptoBytes 5, Summer.

PERRIG, A., SZEWCZYK, R., WEN, V., CULLAR, D., AND TYGAR, J. D. 2001. SPINS: Security
protocols for sensor networks. In Proceedings of the 7th ACM International Conference on Mobile

Computing and Networking (Mobicom’01).

RASMUSSEN, K. B., CAPKUN, S., AND CAGALJ, M. 2007. SecNav: Secure broadcast localization
and time synchronization in wireless networks. In Proceedings of the ACM/IEEE International

Conference on Mobile Computing and Networking (MobiCom’07). New York, 310–313.

SCHALLER, P., ČAPKUN, S., AND BASIN, D. 2007. Bap: Broadcast authentication using crypto-
graphic puzzles. In Proceedings of the International Conference on Applied Cryptography and

Network Security (ACNS’07). Vol. 4521. Springer, 401–419.

SICHITIU, M. AND VEERARITTIPHAN, C. 2003. Simple, accurate time synchronization for wireless
sensor networks. In Proceedings of the IEEE Wireless Communications and Networking Confer-

ence.

SRIKANT, T. K. AND TOUEG, S. 1987. Optimal clock synchronization. In JACM.

SUN, K., NING, P., AND WANG, C. 2005. Fault-tolerant cluster-wise clock synchronization for
wireless sensor networks. IEEE Trans. Depend. Secure Comput. 2, 3, 177–189.

SUN, K., NING, P., AND WANG, C. 2006a. Secure and resilient clock synchronization in wireless
sensor networks. In IEEE J. Selected Area Comm. 24.

SUN, K., NING, P., AND WANG, C. 2006b. Tinysersync: secure and resilient time synchroniza-
tion in wireless sensor networks. In Proceedings of the 13th ACM Conference on Computer and

Communications Security (CCS’06). ACM Press, New York. 264–277.

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

Secure Time Synchronization in Sensor Networks · 23: 35

SUNDARARAMAN, B., BUY, U., AND A, K. 2005. Clock Synchronization for Wireless Sensor
Networks: A Survey. Tech. rep. March.

TITZER, B., LEE, D., AND PALSBERG, J. 2005. Avrora: Scalable sensor network simulation with
precise timing. In Proceedings of IPSN Track on Sensor Platform, Tools and Design Methods for

Networked Embedded Systems (SPOTS’05).

XU, W., TRAPPE, W., ZHANG, Y., AND WOOD, T. 2005. The Feasibility of Launching and Detecting
Jamming Attacks in Wireless Networks. In Proceedings of the ACM International Symposium

on Mobile Ad Hoc Networking and Computing (MobiHoc’05). Illinois.

YAAR, A., PERRIG, A., AND SONG, D. 2003. Pi: A path identification mechanism to defend against
DDoS attacks. In Proceedings of IEEE Symposium on Security and Privacy (SP’03).

Received June 2006; revised August 2007; accepted May 2008

ACM Transactions on Information and Systems Security, Vol. 11, No. 4, Article 23, Pub. date: July 2008.

