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Abstract

This paper considers unconditionally secure protocols for reli-
able broadcast among a set ofn players, some of which may be
corrupted by an active (Byzantine) adversary. In the standard
model with a complete, synchronous network of pairwise au-
thentic communication channels among the players, broadcast
is achievable if and only if the number of corrupted players is
less thann=3. We show that, by extending this model only
by the existence of a broadcast channel among three players,
global broadcast is achievable if and only if the number of cor-
rupted players is less thann=2. Moreover, for this an even
weaker primitive than broadcast among three players is suffi-
cient. All protocols are efficient.

1 Introduction

Broadcast is a fundamental problem in fault-tolerant dis-
tributed computing. With respect to the standard model of
a synchronous network of pairwise authentic channels, many
protocols have been proposed and a large number of results
have been published concerning bounds on fault resilience,
complexity, and alternative models of network connectivity. It
is an interesting open question to analyze these bounds with
respect to slightly more powerful communication models such
as the standard model extended by partial broadcast among
some subsets of the players.

�Appeared at 2000 ACM Symposium on Theory of Computing, May 2000.
Research supported by the Swiss National Science Foundation (SNF), SPP
project no. 5003-045293

1.1 Contributions

We consider the general problem of reductions among various
types of primitives guaranteeing some form of consistency, in
the presence of an adversary who can corrupt certain players.
It is well known that the strongest form of consistency, namely
consensus or broadcast, can be achieved among a set ofn play-
ers connected by pairwise authenticated channels if and only
if the numbert of cheaters is less thann=3. The main result of
this paper is that broadcast secure against anyt < n=2 cheaters
can be achieved by only assuming an additional primitive sat-
isfying some weak form of consistency that is not realizable
for t < n=3. One example of such a sufficient primitive is a
broadcast channel among three players, but even a weak form
of broadcast among three players suffices. Also any broadcast
amongn0 players toleratingdn0=3e cheaters is sufficient.

1.2 Motivation

There are several motivations for this work. First, we hope to
initiate a new line of research on reductions among consistency
primitives, by giving a few non-trivial examples. Second, the
question of whether the boundt < n=3 can be improved is
a very natural one. As it has been proved thatt < n=3 is a
tight bound, one must assume some additional primitive more
powerful than just authenticated channels, and it is natural to
assume the weakest possible primitive not yet implied by the
considered model. Third, it is quite possible that some of these
primitives exist in nature (e.g., based on exploiting some quan-
tum phenomenon, or simply due to the topology of the com-
munication network), and this would imply that the important
broadcast primitive could be realized even fort < n=2 in-
stead of onlyt < n=3. Moreover, one can show that the same
improvement also applies to the more general task of secure
multi-party computation.

1.3 Broadcast

The goal of broadcast among a set of players is to have one
specific player, called the dealer, consistently distribute some
input value to all the remaining players. Since our model does
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not assume a physical channel that provides consistency, this
functionality must be simulated by a protocol among the play-
ers. A broadcast protocol must satisfy the following condi-
tions:

Agreement: All correct players decide on the same output
value.

Validity: If the dealer is correct then all correct players decide
on the dealer’s input value.

Termination: All correct players terminate the protocol after
a finite number of communication rounds.

Consensus is a closely related problem, in which every player
initially holds his own input value to the protocol. Again, every
player must decide on an output value such that the former
agreement and termination properties are still satisfied, while
the validity condition is replaced by

Persistency: If all (correct) players initially hold the same in-
put valuev then all correct players decide onv. In other
words, i.e., pre-agreement on a value remains persistent.

1.4 The two-cast model

In this paper we consider a setP of n players. The goal is
to achieve broadcast unconditionally secure against an active
(Byzantine) threshold adversary that may corrupt up tot of
then players, i.e., the adversary may take full control over the
corrupted players and make them deviate from the prescribed
protocol in an arbitrary way.Unconditional securitymeans
that, for some arbitrarily small (buta priori fixed) error prob-
ability ", the probability that the protocol achieves broadcast
is at least1� " (while the outcome is arbitrary if the protocol
fails) whereas no assumptions are made about the adversary’s
computational power. As a special case of unconditional secu-
rity, perfect securityallows no probability of error (" = 0).
We assume the standard communication model with a com-
plete (fully connected) synchronous network of pairwise au-
thentic channels among the players extended by uncondi-
tionally secure, synchronous broadcast channels1 among each
triple of players, i.e., for each subset of three players (S � P ,
jSj = 3) and for any selection of a dealer among them there
is a broadcast channel from the dealer to the remaining two
players. Such broadcast channels from a dealer to two re-
ceivers will be denoted astwo-cast channels. The security
of the two-cast channels is not necessarily required to be per-
fectly secure (i.e., to have zero error probability) but we as-
sume their error probability"0 to be customizable to an arbi-
trarily small level. Hence we distinguish theperfect two-cast
modelwhere the two-cast channels are assumed to be perfectly
secure ("0 = 0), and theunconditional two-cast modelwhere
the two-cast channels are allowed to have some negligible er-
ror probability"0 > 0.

1In fact, such a broadcast channel might again be simulated by a syn-
chronous protocol among the involved players, for instance based on a quan-
tum physical phenomenon.

1.5 Previous work

For the standard communication model with a complete
synchronous network of pairwise authentic channels, Pease,
Shostak, and Lamport [17] proved that perfectly secure broad-
cast is achievable if and only if less than a third of the play-
ers is corrupted:t < n=3. This tight bound more generally
holds with respect to unconditional security, i.e., when even al-
lowing a negligible error probability, as proven by Karlin and
Yao [15]. For the same model numerous unconditionally se-
cure protocols with optimal resilience have been proposed in
the literature [9, 1, 19, 10, 3, 5, 13] which all have communica-
tion and computation complexities polynomial in the number
of players.
The extension of the standard communication model by par-
tial broadcast was already considered by Franklin, Wright,
and Yung in [11, 12] in the context of secure point-to-point
communication over an incomplete network — a problem ini-
tially studied by Dolev, Dwork, Waarts, and Yung [8] for the
standard communication model. The problem in [11] is to
achieve private point-to-point communication in the presence
of a passive adversary, given partial-broadcast but not neces-
sarily private communication channels among pairs of play-
ers. [12] considers secure point-to-point communication over
local-broadcast networks in the presence of an active adver-
sary.

1.6 Notation

The player set is denoted byP = fp1; : : : ; png. Without loss
of generality we assumep1 to be the dealer of the broadcast.
All pseudo-code descriptions of protocols are stated with re-
spect to the local view of the playerp who stands for any
arbitrary player inP . The complete protocols consist of all
players executing their local codes in parallel. Variables that
have no subscript (e.g.v) are stated with respect to an arbi-
trary player and variables with a subscriptp (e.g.vp) denote
the corresponding variable of the particular playerp.
The protocol descriptions do not explicitly describe how to
handle received messages that are outside the value domain as
expected for the protocol, e.g., if some player expects a value
v 2 f0; 1g from another player but instead receives a value
v =2 f0; 1g. For these cases we always implicitly assume a
correct player to substitute the received value by some arbi-
trary value inside the required domain.
Finally, in our protocol constructions, we focus on achiev-
ing broadcast (and consistency primitives in general) where
the domain of values is restricted tof0; 1g since protocols for
any finite domain can be easily obtained from any bit-protocol
(e.g., by using the construction in [20]). In fact, the general-
ization to any finite domain could even be directly achieved by
slight modification of the described bit-protocols.

1.7 Outline

Section 2 describes a protocol construction for efficient broad-
cast amongn players in the two-cast model, unconditionally
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secure againstt < n=2 actively corrupted players. In Sec-
tion 3, t < n=2 is proven to be a tight bound for the achiev-
ability of broadcast. In Section 4, we first prove that even
a weaker form of two-cast is sufficient to achieve broadcast
amongn players in the presence oft < n=2 player corrup-
tions, and finally prove a large class of consistency primitives
to be equivalent. Implications on general multi-party compu-
tation are discussed in Section 5.

2 Efficient broadcast protocol

This section describes a broadcast protocol forn players in
the perfect two-cast model that is perfectly secure against an
adversary that corrupts any minorityt < n=2 of the players.
At the end of this section we shall see that the same protocol
is still unconditionally secure when the underlying two-cast
channels involve some negligible error probability (i.e., in the
unconditional two-cast model).

2.1 Graded consensus implies broadcast

A common approach to construct broadcast protocols is to find
protocols to solve weaker problems, e.g., graded broadcast by
Feldman and Micali [10], and then to achieve the strong re-
quirements of broadcast by composing the weak protocols in
a clever way. While the constructions in [10] additionally in-
volve common coins, Berman, Garay, and Perry [3] proposed
broadcast protocols that only rely on a consensus variant of
graded broadcast, which we shall denote by graded consen-
sus, and on the fact that there is at least one correct player.
This implies that, whenevert < n, the achievability of graded
consensus immediately implies the achievability of broadcast
as long as at least pairwise communication is possible. Hence,
with respect to our model, it is sufficient to give a protocol con-
struction for graded consensus, since this protocol can then be
extended along the lines of [3]. How to achieve this extension
is described in the following paragraphs.

2.1.1 Graded consensus

Graded consensus is a weak variant of consensus — yet with
the same persistency condition but with a weakened agreement
property which we shall refer to as itsconsistencyproperty.
Every player enters the protocol with some valuev 2 f0; 1g
and finally decides on a valuev0 2 f0; 1g. Moreover, as a
further output of the protocol, every player receives a grade
valueg 2 f0; 1g to be interpreted as a rating on the level of
agreement that has been achieved, i.e.,g = 0 for reject, and
g = 1 for accept.2

While pre-agreement cannot be invalidated by this protocol
due to its persistency property, the adversary will still have the
power to prevent agreement in any other case. However, an
accepting player (g = 1) always knows that all correct players
decided on the same valuev0, i.e., he detects agreement. This

2Note that graded broadcast in [10] originally worked with three grade val-
ues (reject, semi-accept, and accept). However, the intermediary grade value
is not necessary for our construction.

property will be crucial in order to later extend this protocol to
a broadcast protocol.

Definition 1: A protocol achievesgraded consensusif it satis-
fies the following conditions.

Consistency: If any correct playerp accepts a value
v0p 2 f0; 1g with gp = 1 then, for every correct playerq,
v0q = v0p.

Persistency: If all correct players enter the protocol with the
same inputv 2 f0; 1g thenv0p = v andgp = 1 for every
correct playerp.

The following theorem is an immediate consequence of Lem-
mas 1 and 2 in the next sections.

Theorem 1 If pairwise authentic communication is possible
among then players, then, for any numbert of potential player
corruptions, the achievability of graded consensus implies the
achievability of broadcast. Moreover, efficiency of graded con-
sensus implies efficiency of broadcast.

2.1.2 King consensus

A variant of graded consensus can be achieved by, after first
executing a graded-consensus protocol, making some desig-
nated playerpk, called the king [3], redistribute his resulting
value of the graded-consensus protocol. Finally, every player
who did accept the outcomev0 of the graded-consensus pro-
tocol (g = 1) sticks to this value whereas all other players
(g = 0) decide on the value received by the king. We refer to
this protocol as theKingConsensus protocol.

Protocol KingConsensuspk (P; v):
1. (v; g) := GradedConsensus (P; v);

2. if p = pk thenSendToAll (v); w := v elseReceive (w) fi;

3. if g = 1 thenv0 := v elsev0 := w fi;

4. returnv0;

It is easy to see that this protocol still maintains persistency.
Moreover, agreement is even achieved wheneverpk is correct
(which, of course, is generally unknown).

Definition 2: A protocol achievesking consensus(with re-
spect topk) if it satisfies the following conditions.

Consistency: If player pk is correct then all correct players
agree on the same valuev0 2 f0; 1g at the end of the
protocol.

Persistency: If all correct players enter the protocol with the
same inputv 2 f0; 1g then v0p = v for every correct
playerp.

Lemma 1 Protocol KingConsensus achieves king consen-
sus.

3



Proof: Consistency:Suppose playerpk to be correct. If every
correct playerp acceptspk’s value by settingv0p := w then
all correct players trivially agree on the same value, sincepk
distributed the same value to every other player. On the other
hand, suppose that any correct playerp ignorespk ’s value by
settingv0p := vp sincegp = 1. Since this implies agreement
after the execution of graded consensus, especiallypk holds
and redistributes this value. Hence, every correct player will
decide on this value independently on whether or not he adopts
pk ’s value.

Persistency:If all correct players enter the protocol with the
same inputv then, for every correct playerp, vp = v and
gp = 1 after the execution ofGradedConsensus, and hence
v0p = v at the end of the protocol.

2.1.3 Broadcast

Finally, broadcast can be achieved by first having the dealer
p1 distribute his value and then appendingt instances of
KingConsensuswith distinct kingspk 2 P n fp1g.

Protocol Broadcastp1 (P; v):

1. if p = p1 thenSendToAll (v) elseReceive (v) fi;

2. for k := 2 to t+ 1 dov := KingConsensuspk
(P; v) od;

3. returnv;

Lemma 2 ProtocolBroadcast achieves broadcast if at most
t players are corrupted.

Proof: Consistency:If the dealer is correct then agreement
on his input holds before the firstKingConsensus protocol is
executed. Hence, by Lemma 1 agreement on the dealer’s input
will persist until the end of the protocol.

Agreement:If the dealer is corrupted then there is at least one
correct player infp2; : : : ; pt+1g and hence, after this player’s
KingConsensus, agreement holds by Lemma 1.

Termination:Termination is trivially satisfied by construction.

2.2 Achieving graded consensus

This section presents a protocol construction for graded con-
sensus in the two-cast model. The construction proceeds
in three steps. In Section 2.2.1, two-cast is extended to a
majority-voting protocol among (still) three players. Any in-
vocation of two-cast will always be encapsulated by this pro-
tocol, i.e., two-cast will not be used in any other context. Sec-
tion 2.2.2 shows how to build a weak consensus variant on top
of majority-voting among three players, which then in Sec-
tion 2.2.3 is extended to a graded-consensus protocol.

2.2.1 Triple-majority voting

This section describes the basic sub-protocol that exploits the
power of two-cast. For simplicity, let’s assume that two-cast
works in a way that, besides the two actual receivers, also the
sender receives an output which is equal to his input value.
The protocolMajorityVoting is defined for any subset of
three playersfq; r; sg � P with every player initially holding
an input valuev 2 f0; 1; 2g, i.e., a value from the original
domain extended by an invalidity value2, and finally deciding
on an output valuev0 2 f0; 1; 2g.

Protocol MajorityVoting(fq; r; sg; v): First, q, r, ands
two-cast their initial valuesvq , vr, and vs. Second, every
player decides on the majority value among his outputs of
the three two-casts, or on2 if no majority exists. Letvq , vr,
andvs be the values that are effectively received by a player
p 2 fq; r; sg. Thenp decides on

v0 :=

�
vx ; if 9x; y 2 fq; r; sg; x 6= y : vx = vy;
2 ; else:

Lemma 3 For any number of corrupted players among
fq; r; sg, all correct players decide on the same output value.
If at most one player is corrupted and any two correct players
enter the protocol with the same valuev, then every correct
player finally decides onv0 = v.

Proof: The lemma immediately follows from the properties of
two-cast and from the construction of the protocol.

TheMajorityVoting protocol will always be applied for all�
n

3

�
distinct subsetsfq; r; sg � P of three players in paral-

lel. Thus, during such a round of protocol invocations, ev-
ery playerp receives an output valuevpqr for each subset
fq; rg � P nfpg.3 Furthermore we assume the player set to be
ordered, i.e., for any two playersq andr, (q < r) , :(r < q),
such that the expression “8q; r 2 P n fpg; (q < r)” quantifies
over every subsetfq; rg � P n fpg exactly once. Finally, we
define

vpq� � w :() 8r 2 P n fp; qg : vpqr = w

to express that allMajorityVoting protocols that involve
both of the playersp andq result inw.

2.2.2 Weak consensus

Weak consensus is a variant of crusader agreement in [7]
and satisfies the same conditions as the Makeunique proto-
col in [14]. It can be seen as an even weaker consensus vari-
ant than graded consensus. Every player enters the protocol
with some valuev 2 f0; 1g and finally decides on a value
v0 2 f0; 1; 2g. Every player will decide on a valuev0 2 f0; 1g
if and only if, according to his view, agreement onv = v0

could have been satisfied at the beginning of the protocol —
otherwise he will decide onv0 = 2.

3Due to the set-based definition,vpqr = vqpr = : : : all denote the same
value for any permutation of the occurring players.
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Definition 3: A protocol achievesweak consensusif it satisfies
the following conditions.

Consistency: Ifv0p 2 f0; 1g for any correct playerp then
v0q 2 fv0p; 2g for every correct playerq.

Persistency: If all correct players enter the protocol with the
same inputv 2 f0; 1g then v0p = v for every correct
playerp.

Protocol WeakConsensus(P; v):4

1. 8q; r2P nfpg; (q < r) : vpqr:=MajorityVoting (fp; q; rg; v);

2. X0 :=
�
q 2 P n fpg : vpq� � 0

	
;

3. X1 :=
�
q 2 P n fpg : vpq� � 1

	
;

4. if jX0j � n� t� 1 thenv0 := 0

5. elseifjX1j � n� t� 1 thenv0 := 1

6. elsev0 := 2

7. fi;

8. returnv0

Lemma 4 The protocolWeakConsensus guarantees that, for
any correct playerp and any valuew 2 f0; 1g, jXw

p j 6= ;
impliesX1�w

p = ;.

Proof: q 2 Xw
p impliesvpqr = w for all r 2 P n fp; qg and

hence there is nor 2 P nfp; qg satisfyingvprq = 1�w which
impliesX1�w

p = ;.

Lemma 5 For any two correct playersp andq and any value
w 2 f0; 1g the setsXw

p and X1�w
q are disjoint: Xw

p \
X1�w
q = ;.

Proof: If p = q then the lemma immediately follows from
Lemma 4. Suppose now thatp 6= q and that there is a player
r 2 P and a valuew 2 f0; 1g such thatr 2 Xw

p \X
1�w
q . Then

w = vprqp = vqrpq = 1� w in contradiction to the consistency
of MajorityVoting as stated in Lemma 3.

Theorem 2 ProtocolWeakConsensusachieves weak consen-
sus amongn � 3 players secure againstt < n=2 actively
corrupted players.

Proof: Consistency:For the sake of contradiction, suppose
v0p = w 2 f0; 1g andv0q = 1� w. Then, according to the pro-
tocol,jXw

p j � n�t�1 andjX1�w
q j � n�t�1. First note that

q =2 Xw
p (and hence by symmetryp =2 X1�w

q ) since otherwise
for anyqi 2 X1�w

q we would get1�w = vqqip = vpqqi = w
would hold. Since alsoXw

p \ X1�w
q = ; by Lemma 5, the

setsXw
p , X1�w

q , andfp; qg are pairwise disjoint and hence
n = jP j � jXw

p [X1�w
q [ fp; qgj = jXw

p j + jX1�w
q j+ 2 �

2(n � t � 1) + 2 = 2(n � t) > 2(n � n
2 ) = n, which is a

contradiction.

Persistency:LetC be the set of correct players. Since all cor-
rect players input the same valuev 2 f0; 1g, C n fpg � Xv

p

4Remember that pseudo-code is stated with respect to the local view of
playerp (Section 1.6).

for every correct playerp and hencejXv
p j � n � t � 1. By

Lemma 4,X1�v
p = ; and hencevp = v at the end of the

protocol.

2.2.3 Graded consensus

We are now ready to construct a graded-consensus protocol on
top of the protocol for weak consensus of the previous section.
Refer to the beginning of Section 2.1.1 for the definition of
graded consensus.

Protocol GradedConsensus(P; v):
1. v := WeakConsensus (P; v);

2. 8q; r2P nfpg; (q < r) : vpqr:=MajorityVoting (fp; q; rg; v);

3. Y 0 :=
n
q 2 P n fpg :

�
r 2 P n fp; qg : vpqr = 0

	
� t

o
;

Z0 :=
n
q 2 P n fpg : vpq� � 0

o
;

4. Y 1 :=
n
q 2 P n fpg :

�
r 2 P n fp; qg : vpqr = 1

	
� t

o
;

Z1 :=
n
q 2 P n fpg : vpq� � 1

o
;

5. if jY 0j > 0 thenv0 := 0 elsev0 := 1 fi;

6. if jZv0

j � t theng := 1 elseg := 0 fi;

7. return(v0; g);

Lemma 6 If in the protocolGradedConsensus, for some cor-
rect playerp and some valuew 2 f0; 1g, Y w

p 6= ;, then
Y 1�w
q = ; for every correct playerq.

Proof: Let p andq be two (not necessarily distinct) correct
players and for somew 2 f0; 1g andr 2 P n fpg assume that
r 2 Y w

p . Hence

9R = fr1; : : : ; rtg � P n fp; rg : 8ri 2 R : vprri = w :

MajorityVoting guarantees that the resulting value equals2
if all inputs differ. Hence it must hold either that playerp had
inputvp = w for all protocolsMajorityVoting(fp; r; rig; v)
or that playerr and all playersri 2 R had inputw for these
protocols. Sincep and at least one player infr; r1; : : : ; rtg are
correct,WeakConsensus must have resulted inv0 = w for at
least one correct player.
On the other hand, the same argumentation would hold ifs 2
Y 1�w
q for anys 2 P n fqg, i.e.,Y 1�w

q 6= ; would imply that
WeakConsensusmust also have resulted inv0 = 1� w for at
least one correct player, which is impossible by Theorem 2.

Theorem 3 Protocol GradedConsensus achieves graded
consensus amongn � 3 players secure againstt < n=2 ac-
tively corrupted players.

Proof: Consistency:Suppose that some correct playerp ac-
cepts somev0p = w with gp = 1. HencejZw

p j � t, i.e.,

9R = fr1; : : : ; rtg � P n fpg : 8ri 2 R : vpri� � w ;

and for every correct playerq 6= p eitherq 2 R and hence
vpq� � vqp� � w or q =2 R and8ri 2 R : vpriq = vqpri = w,
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both of which implyp 2 Y w
q . ThusY w

q 6= ;, and by Lemma 6
Y 1�w
q = ;, and hencev0q = w = v0p.

Persistency: If all correct players enterGradedConsensus
with the same valuev = w 2 f0; 1g then, by Theorem 2, all
correct players still hold valuew after WeakConsensus and
use it as an input for allMajorityVoting protocols they are
involved in. Hence for every correct playerp jZw

p j � t since
vpq� � w for every other correct playerq 6= p (of which there
are at leastt), andv0p = w andgp = 1.

2.3 Broadcast

Theorem 4 In the perfect (unconditional) two-cast model,
perfectly (unconditionally) secure broadcast amongn � 3
players is achievable ift < n=2. Moreover, there exist proto-
cols with communication and computation complexities poly-
nomial inn.

Proof: Achievability in the perfect model follows from Theo-
rem 1 and Theorem 3. Efficiency can be easily verified by code
inspection of theBroadcast protocol:3t+ 1 communication
rounds,tn3 two-cast invocations,O(tn3) overall message bit
complexity, andO(tn2) local computation per player.
In order to achieve unconditionally secure broadcast in the
unconditional model exactly the same protocol can be used.
While the broadcast protocol remains perfectly secure if none
of the two-casts fails, it must already be considered to fail if
any single two-cast invocation fails.5 Hence, an upper bound
on the error probability" of the broadcast protocol when given
the error probability"0 of the underlying two-cast, can be es-
timated as the number of two-cast invocations times"0. The
protocol involvest rounds ofKingConsensus each of which
involves two rounds ofMajorityVoting among all

�
n

3

�
sets

of three players. Finally, eachMajorityVoting involves
three two-cast invocations. Hence the entire broadcast pro-
tocol involves a total number of6t �

�
n

3

�
< tn3 single two-cast

invocations, which yields an error probability of" � tn3"0.
Hence, in order to achieve broadcast with error probability at
most", for some given", the error probability"0 of the under-
lying two-cast can be customized to"0 � "

tn3
, i.e.," reduced

by a factor polynomial inn.

3 Tightness of the(n=2)-bound

In this section we prove that, in the two-cast model, uncondi-
tionally secure broadcast is not achievable if at least half of the
players are actively corrupted.
Our proof makes use of the ideas in [16] for the impossibil-
ity of agreement among three players with one Byzantine fault
with respect to the standard model with only pairwise commu-
nication channels. The idea there is to suppose that there exists
such a protocol involving three processors which then can be

5Note that we even allow two-cast among three correct players to fail with
the given error probability.

used to build a different system with contradictory behavior,
hence proving that such a protocol cannot exist. Note that we
do not require this new system to solve the broadcast problem,
it is just a distributed system whose behavior is determined by
the local programs and inputs of the involved processors which
can achieve broadcast when being arranged in the original way.
Nor is there anymore an adversary to take control of any pro-
cessor. We will only argue that for some processor pairs that
are considered to be correct, in the new system (without the
presence of an adversary), their views (while being correct)
are indistinguishable from their views in the original system
for some particular strategy of an admissible adversary (with
respect to the original broadcast), and that hence all conditions
for broadcast must still hold with respect to every such a pair
of processors.
We first show that broadcast is impossible for the special case
of n = 4 andt � 2. The general case can then be shown by a
generalization of this proof.

Lemma 7 Given only pairwise communication channels and
two-cast among each triple of players, unconditionally secure
broadcast amongn = 4 players is not achievable ift � 2.

Proof: Suppose, for the sake of contradiction, that there is a
protocol that achieves broadcast for the four playersp0; : : : ; p3
with p0 being the dealer, even if up to two of the players are
actively corrupted. Let�0; : : : ; �3 denote the players’ corre-
sponding processors with their local programs and, for each
i 2 f0; : : : ; 3g let �i+4 be an identical copy of processor
�i. Instead of connecting the four original processors as pre-
scribed for the setting in which they can be used for broadcast,
we build a network among all eight processors (i.e., the origi-
nal ones together with their copies) in the following way:

In the original system, each processor�i communicates with
the processors�i�1, �i+1, and�i+2 (interpreting the indices
modulo4). Instead, the pairwise communication channels are
reconnected such that each processor�i sends his outgoing
messages to the processors�i�1, �i+1, and�i+2, interpreting
the indices modulo8 instead of modulo4.
In the original system, each processor�i communicates via
two-cast with the processor pairs (�i�2,�i�1), (�i�1,�i+1),
and (�i+1,�i+2) (again interpreting the indices modulo4). In-
stead, the two-cast channels are reconnected such that each
processor�i two-casts his outgoing messages to the processor
pairs (�i�2,�i�1), (�i�1,�i+1), and (�i+1,�i+2), interpreting
the indices modulo8.

It is now easy to see that the situation for every pair of adja-
cent processors�i and�((i+1) mod 8) is completely consistent
with the situation of the two adjacent processors�(i mod 4)

and�((i+1) mod 4) in the original system:

� Any message that would have been transferred among�i
and�i+1 in the original system is still transferred among
them in the new system.

� Any two-cast for the receivers�i and�i+1 in the original
system is still addressed to the same processors�i and
�i+1 in the new system.
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Hence, for every pair of adjacent processors�i and
�((i+1) mod 8), their common view is completely indistin-
guishable from their view as two processors�(i mod 4)

and �((i+1) mod 4) in the original system with respect to
an adversary that corrupts the remaining two processors
�((i+2) mod 4), �((i+3) mod 4) in a certain admissible way.
This new system involves two processors of the type corre-
sponding to the dealer, namely�0 and�4, that are the only
processors that enter an input. Suppose now that�0 and�4
have distinct inputs inf0; 1g, i.e., that without loss of general-
ity, �0 has inputv0 = 0 and that�4 has inputv4 = 1.6

We now argue that there are at least two pairs of adjacent pro-
cessors (i.e., one fourth among all eight such pairs) for which
the broadcast conditions are not satisfied although being com-
pletely consistent with two correct processors in the original
system. For this we distinguish two cases:

� Agreement holds for all pairs of adjacent processors, i.e.,
all eight processors decide on the same valuev 2 f0; 1g.
Then both pairs that involve the dealer with input1 � v
(either�0 or�4) violate the validity property of broadcast.

� Agreement does not holdfor all pairs of adjacent proces-
sors. Then there must be at least two such pairs deciding
on distinct values since the processors are arranged in a
circle.

Hence there must be some pair of adjacent processors
(�i; �((i+1) mod 8)) that fails with a probability of at least14 .
Otherwise strictly less than two pairs would fail per such in-
vocation of the new system. Let now�0 be the probability
that a dealer selects input0. Then over all invocations of
the new system (for arbitrary inputs of�0 and�4) the same
pair still fails with a probability of at least14�0(1 � �0) (i.e.,
with a probability of at least14 in all runs wherev0 = 0 and
v4 = 1). Hence, there is an admissible adversary strategy in
the original system of four processors to make the according
pair (�(i mod 4); �((i+1) mod 4)) fail with a probability of at
least14�0(1� �0), which is non-negligible.

Theorem 5 Given only pairwise communication channels
and broadcast channels among each triple of players, uncondi-
tionally secure broadcast amongn > 3 players is not achiev-
able if t � n=2.

Proof: The proof of Lemma 7 can be generalized for any num-
ber of players. For simplicity, supposen = 2k to be even and
t � k (the casen = 2k+1 andt � k+1 can be easily reduced
to the even case by neglecting one of the players completely,
which can be interpreted as a special kind of active corruption
of this particular player, hence reducing this case ton = 2k
andt � k).

6Note that, a priori, we assume that any input value fromf0; 1g will be
selected with some non-negligible probability� by the dealer. Otherwise
the broadcast problem could be trivially solved for anyt � n by a protocol
wherein every player decides on the value that is selected with overwhelming
probability.

For eachi 2 f0; : : : ; n � 1g let �i+n again be an identical
copy of processor�i. The resulting set of2n processors is
partitioned into eight blocks�0; : : : ;�7 such thatj�2mj =
dk2 e, andj�2m+1j = bk2c for m 2 f0; : : : ; 3g.
These2n processors are now connected similarly as in the
proof of Lemma 7:
The pairwise communication channels are reconnected such
that each processor of block�i sends his outgoing messages
to the processors of the blocks�i�1, �i+1, and�i+2, while
interpreting the indices modulo8 instead of modulo4.
The two-cast channels are reconnected such that each proces-
sor of block�i two-casts his outgoing messages to the proces-
sor pairs among�i�2 [�i�1, �i�1 [�i+1, and�i+1 [�i+2

while interpreting the indices modulo8.
The rest of the proof proceeds analogously to the proof of
Lemma 7 by arguing about the consistency among adjacent
blocks�i of processors rather than only among adjacent (sin-
gle) processors�i.

4 Equivalence of consistency primitives

Theorem 4 states that two-cast implies broadcast for anyn � 3
andt < n=2. This result can be generalized by proving equiv-
alence of a large class of consistency primitives, i.e., that any
single primitive from this class can be used to efficiently sim-
ulate any other one from this class. First it is shown that even
weak broadcast (the dealer variant of weak consensus (Defini-
tion 3)) among three players, calledweak two-cast, is sufficient
in order to achieve broadcast forn andt < n=2. Second we
prove that, more generally, any broadcast (or weak broadcast)
primitive for n0 players that is resilient againstt0 = dn03 e
player corruptions is sufficient. Finally, these results are ex-
tended to consensus, yielding the following theorem whose
proof immediately follows from Theorem 4 and Lemmas 8,
9, and 10.

Theorem 6 The following consistency primitives are equiva-
lent (up to a simulation cost polynomial in the number of play-
ersn):

� weak broadcast for anyn � 3 with t = dn=3e.

� weak consensus for anyn � 3 with t = dn=3e.

� two-cast witht � 3.

� broadcast for anyn with t < n=2.

� consensus for anyn with t < n=2.

4.1 Weak broadcast

In weak broadcast, the dealer holds an inputv 2 f0; 1g and
every player decides on a valuev0 2 f0; 1; 2g.

Definition 4: A protocol achievesweak broadcastif it satisfies
the following conditions.
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Consistency: If v0p 2 f0; 1g for any correct playerp thenv0q 2
fv0p; 2g for every correct playerq.

Validity: If the dealer is correct then every correct playerp
decides on the dealer’s input value:v0p = v.

Lemma 8 Weak two-cast implies two-cast with a constant
simulation cost.

Proof: Given weak two-cast, two-cast can be implemented as
follows: First, the dealer distributes his value by a weak two-
cast protocol. Then both receivers exchange the values they
have received from the dealer. A receiver who received a value
v < 2 from the dealer sticks to this value whereas in the other
case (v = 2) he replaces his value by the valuew received
from the other receiver (during the second round) or on0 if
w = 2.
Hence, if the dealer is correct, a correct receiver always de-
cides on the dealer’s value. On the other hand, if the dealer is
corrupted, then two correct receivers either receive the same
valuev 2 f0; 1g or at least one of them receivesv = 2 (by
the consistency property of weak two-cast) which makes him
adapt the other players’ valuew if w 2 f0; 1g. Finally, if the
weak broadcast results inv = 2 for both receivers then both of
them replace their values by0.

4.2 Even weaker broadcast

For our constructions, we always assumed two-cast or weak
two-cast to be reliable independently of the number of cor-
rupted players that are involved. In fact, the same construc-
tions even work with two-cast or weak two-cast that is only
secure against one player corruption (whereas nothing is as-
sumed about an invocation of this primitive if more than one
player is corrupted). More generally, we show that any broad-
cast or weak broadcast primitive forn0 players that is resilient
againstt0 = dn03 e player corruptions is sufficient in order to
achieve two-cast amongn = 3 players witht � 3, and hence
to achieve broadcast for anyn � 3 with t < n=2.

Lemma 9 Weak broadcast for anyn0 � 3 with t0 = dn0=3e
implies weak two-cast.

Proof: The proof proceeds in two steps. Weak broadcast for
anyn0 � 3 with t0 = dn0=3e is first reduced to weak two-cast
that toleratest � 1 player corruptions. In a second step, this
two-cast primitive is generalized to tolerate arbitrarily many
player corruptions.

1. In order to achieve weak two-cast among three players
p1, p2, andp3, we let each of these players simulate (any)
up todn0=3e players in the given weak broadcast proto-
col (with the only restriction that the dealer of the weak
two-cast in fact simulates the dealer of the weak broad-
cast). Since, by assumption, at most one of the play-
erspi (i 2 f1; 2; 3g) is corrupted who simulates at most
dn0=3e players in the original protocol, the original pro-
tocol achieves broadcast among the simulated players.
Hence we can let each playerpi decide on the value of
any one of his simulated players.

2. Any weak two-cast witht � 1 can be extended to tolerate
arbitrarily many player corruptions. Since the communi-
cation model is synchronous there is an upper bound on
the delay time on every underlying communication prim-
itive. Hence there is an upper bound on the delay time of
the given (possibly composed) two-cast whenever only
t � 1 players are actually corrupted. Hence, in order to
toleratet � 3, we can let the players invoke the same two-
cast primitive with the only restriction that any receiver
sticks to some default value as soon as the upper bound
on the delay time is exceeded. Since, in this case, at most
one player is correct, all conditions for weak broadcast
are trivially satisfied.

4.3 Consensus primitives

Independently of the model, the achievability of consensus al-
ways implies achievability of broadcast since, given a consen-
sus protocol, we can let the dealer multicast his input value in
a first phase and then let all players run the consensus protocol
on the received values. On the other hand, the achievability of
broadcast implies the achievability of consensus whenever the
corrupted players form a minority, since we can use broadcast
for every player to publish his input value in a first phase, and
in a second phase, the players perform a majority voting on all
received values. The same argumentation holds for the mutual
implication of weak broadcast and weak consensus, and hence
we get the following lemma:

Lemma 10 Givenn players andt < n=2 then broadcast and
consensus are equivalent, and weak broadcast and weak con-
sensus are equivalent (up to a simulation cost polynomial in
n).

5 Secure multi-party computation

As a more general task than broadcast or consensus, secure
multi-party computation allows the players to distributedly
compute an arbitrary function on the player’s inputs by keep-
ing the player’s inputs private and guaranteeing correctness of
the computation. Ben-Or, Goldwasser, and Wigderson [2], and
Chaum, Cr´epeau, and Damg˚ard [4] proved that in the standard
model with a synchronous network of pairwise authentic chan-
nels unconditionally secure multi-party computation amongn
players is possible if and only ift < n=3 of the players are
actively corrupted. Rabin and Ben-Or [18] later proved that
when additionally assuming global broadcast channels, uncon-
ditionally secure multi-party is even achievable if (and only if)
t < n=2.
Our results now immediately imply that the same bound is
achievable under the considerably weaker assumption of weak
broadcast for only three players each, which is stated in the
following theorem.
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Theorem 7 Given weak broadcast among each triple of play-
ers, unconditionally secure multi-party computation amongn
players is possible if and only if the numbert of actively cor-
rupted players satisfiest < n=2. There exist protocols with
communication and computation complexities polynomial in
n.

Proof: ((=): In order to achieve multi-party computation
amongn players secure againstt < n=2 active player corrup-
tions, the protocol of either [18] or [6] is applied by addition-
ally substituting every invocation of the global broadcast chan-
nel by the broadcast protocol that was constructed in Section 2,
and by then simulating two-cast by weak two-cast according to
the proof of Lemma 8. The efficiency of this protocol imme-
diately follows from the efficiency of the protocols in [18, 6]
and from the efficiency of the constructions in Section 2 and
in the proof of Lemma 8.

(=)): If secure multi-party computation would be achievable
for any t � n=2 then especially broadcast would be achiev-
able as a special case of general multi-party computation, in
contradiction to Theorem 5.

6 Conclusion and open problems

We have shown that, when assuming certain weak consistency
primitives in addition to the standard communication model,
broadcast and consensus amongn players is achievable when-
evert < n=2 instead oft < n=3 in the standard model. More-
over, a large class of such consistency primitives is equivalent.
For a further line of research it would be interesting to
find achievability reductions including additional consistency
primitives. For example, one concrete open question is to char-
acterize what is achievable when extending the standard model
with broadcast amongn0 > 3 players that tolerates any num-
ber of player corruptions (instead ofn0 = 3 in the two-cast
model). Furthermore it would be interesting to know whether
the same results still hold with respect to an incomplete two-
cast network where only a subset of all two-cast channels is
assumed, i.e., to characterize tight conditions on the network
of two-cast channels for the previous results still being achiev-
able.
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