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Abstract. This paper improves on the classical results in uncondition-
ally secure multi-party computation among a set of n players, by consid-
ering a model with three simultaneously occurring types of player cor-
ruption: the adversary can actively corrupt (i.e. take full control over) up
to ta players and, additionally, can passively corrupt (i.e. read the entire
information of) up to tp players and fail-corrupt (i.e. stop the compu-
tation of) up to tf other players. The classical results in multi-party
computation are for the special cases of only passive (ta = tf = 0) or
only active (tp = tf = 0) corruption. In the passive case, every function
can be computed securely if and only if tp < n/2. In the active case,
every function can be computed securely if and only if ta < n/3; when
a broadcast channel is available, then this bound is ta < n/2. These
bounds are tight.
Strictly improving these results, one of our results states that, in addi-
tion to tolerating ta < n/3 actively corrupted players, privacy can be
guaranteed against every minority, thus tolerating additional tp ≤ n/6
passively corrupted players. These protocols require no broadcast and
have an exponentially small failure probability. We further show that
the bound t < n/2 for passive corruption holds even if the adversary is
additionally allowed to make the passively corrupted players fail.
Moreover, we characterize completely the achievable thresholds ta, tp

and tf for four scenarios. Zero failure probability is achievable if and
only if 3ta + 2tp + tf < n; this holds whether or not a broadcast chan-
nel is available. Exponentially small failure probability with a broadcast
channel is achievable if and only if 2ta +2tp + tf < n; without broadcast,
the additional condition 3ta + tf < n is necessary and sufficient.
In this corrected version, an error pointed out by Damg̊ard [Dam99] is
corrected.
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1 Introduction

1.1 Secure Multi-Party Computation

Consider a set of n players who do not trust each other. Nevertheless
they want to compute an agreed function of their inputs in a secure
way. Security means achieving correctness of the result of the computa-
tion while keeping the players’ inputs private, even if some of the play-
ers cheat. This is the well-known secure multi-party computation problem
(e.g. [Yao82,GMW87,BGW88,CCD88,RB89]). For an excellent overview see
[Fra93,Can95]. Secure multi-party computation can alternatively, and more gen-
erally, be seen as the problem of performing a task among a set of players that
is specified by involving a trusted party, where the goal of the protocol is to
replace the need for the trusted party. In other words, the functionality of the
trusted party is shared among the players. Secure function evaluation described
above can be seen as a special case of this more general setting. Most protocols
described in the literature in the context of secure function evaluation also apply
in the general context. This is also true for the protocols described in this paper.

There exists a rich literature on the subject. Previous approaches can be
classified according to a number of criteria that are briefly discussed below.

– Communication: The communication models differ with respect to sev-
eral criteria: Whether or not secure communication channels are available,
whether or not broadcast channels are available, and whether the communi-
cation channels are synchronous or asynchronous. Some papers also consider
incomplete network topologies, i.e. limited connectivity.

– Adversaries: Cheating players can be modeled by assuming a central adver-
sary that can corrupt players. One generally distinguishes between actively
corrupted players, passively corrupted players, and fail-corrupted players.

– Security: The basic security requirements are privacy and correctness. Pri-
vacy means that the adversary obtains no information about the uncor-
rupted players’ inputs beyond what he learns from seeing the corrupted
players’ inputs and the output of the computation. Correctness means that
the adversary cannot prevent the uncorrupted players from learning the cor-
rect output. Furthermore, robustness means that once the inputs have been
committed by the players, the adversary cannot stop the computation. We
refer to [Can97,Can98] for a precise definition of security in multi-party com-
putation.
The types of tolerable adversaries have recently been generalized in a num-
ber of directions (adaptive adversaries [CFGN96], uncoercibility [CG96],
non-threshold adversaries [HM97]), and some authors have investigated
multi-party computation for various minimality and complexity criteria
[FKN94,CGT95,FY92,Kus89].
Security can also be classified according to the adversary’s computational
resources (limited, hence cryptographic security, e.g. [CDG87,GMW87],
or unlimited, hence unconditional or information theoretic security,
e.g. [BGW88,CCD88,RB89]). In the information-theoretic model one can
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distinguish between protocols with exponentially small (e.g. [CCD88,RB89])
or with zero failure probability (e.g. [BGW88]). We refer to the latter as
perfect multi-party computation.

– Generality: Many papers describe protocol constructors which, for any
given function, generate a protocol for securely computing this func-
tion (e.g. [Yao82,GMW87,GHY87,BGW88,CCD88,RB89,Cha89]), while
other approaches are tailored to a particular function like voting (e.g.
[CFSY96]), auctioning [FR96], sharing of encryption or signature op-
erations [SDFY94,GJKR96a,GJKR96b], or private information retrieval
[CGKS95,KO97].1

1.2 Previous Results and Motivation

Ben-Or, Goldwasser and Wigderson [BGW88] and independently Chaum, Cré-
peau and Damg̊ard [CCD88] proved two fundamental results in unconditional
multi-party computation among a set of n players. When the adversary only
passively corrupts players, secure multi-party computation is possible if and
only if the number of corrupted players is less than n/2. When the adversary
only actively corrupts players, secure multi-party computation is possible if and
only if the number of corrupted players is less than n/3. T. Rabin and Ben-Or
[RB89] proved that when a broadcast channel is available, then the threshold for
active corruption is n/2. These bounds are tight in the sense that every function
can be securely computed when the threshold condition is satisfied, but there
exist functions (in fact almost all functions) that cannot be securely computed
when the threshold condition is violated.

The protocols of [BGW88] have zero failure probability, i.e. they are per-
fect. The failure probability can be made exponentially small for the protocols
of [CCD88] and [RB89]. The results of [RB89] cannot be achieved with zero
failure probability.

This paper introduces and investigates a new model for multi-party compu-
tation in which the adversary can simultaneously perform three different kinds
of player corruption: active corruption, passive corruption, and fail-corruption.

Special cases of adversaries that perform different kinds of player corruption
have previously been considered in the literature. Chaum [Cha89] considered gen-
eral multi-party protocols that are secure against an adversary that can corrupt
either up to d players actively or, alternatively, can corrupt up to c players pas-
sively, but in his model only one type of corruption occurs at the same time.2 In
other words, the adversary chooses between active or passive corruption and all
corrupted players are corrupted in the same way. The protocols achieve correct-
ness (with negligible failure probability) with respect to any d actively corrupted,

1 The major reason for designing protocols for special functions compared to applying
a general-purpose protocol is the potential gain of efficiency.

2 For instance, the thresholds c = 1 and d = b(n − 1)/2c given in the example in Sec-
tion 3.1 of [Cha89] cannot be tolerated if simultaneous passive and active corruption
occur.



4 Matthias Fitzi, Martin Hirt, and Ueli Maurer

or privacy with respect to any c passively corrupted players, where 2c + d < n
is required. Meyer and Pradhan [MP91], and Garay and Perry [GP92] treated
the case of simultaneous active and fail-corruptions for Byzantine agreement.
The simultaneous presence of active and passive player corruption was consid-
ered by Dolev et al. [DDWY93] in the context of secure message transmission
over general networks. That paper also mentions the possibility of extending
those results to multi-party computation. In contrast to [Cha89], the models
of [MP91,GP92,DDWY93] and also of this paper consider a mixed adversary
that simultaneously performs different kinds of corruption.

1.3 Contributions of this Paper

We introduce a new model for unconditionally secure multi-party computation
among a set of n players where the adversary may actively corrupt, passively
corrupt, and fail-corrupt some of the players. We refer to this model as the mixed
model. A (ta, tp, tf )-adversary (or simply a (ta, tp)-adversary when tf = 0) may
actively corrupt up to ta players and, additionally, passively corrupt up to tp and
fail-corrupt up to tf other players. To actively corrupt a player means to take
full control over the corrupted player, i.e. to receive and send arbitrary messages
in this player’s name. To passively corrupt a player means to have access to
all information that this player receives during the whole protocol, including his
inputs to the protocol (if any). To fail-corrupt a player means that the adversary
may stop the communication from and to that player at an arbitrary time during
the protocol. Once a player is caused to fail, he will not recover. However, the
adversary is not allowed to read the internal data of a fail-corrupted player,
unless the player is also passively corrupted at the same time. In other words, if
the adversary wants both to read the internal information of a player and to be
able to make the player fail, then he must both passively corrupt and fail-corrupt
that player, and the player is counted for both thresholds tp and tf . Note that
the cases ta = tf = 0 and tp = tf = 0 correspond to the passive and active
model, respectively, as considered in the previous literature.

A protocol is (ta, tp, tf )-secure (or (ta, tp)-secure) if any (ta, tp, tf )-adversary
(or (ta, tp)-adversary) obtains no additional information about the non-corrupted
players’ inputs (beyond what is provided by the function output) and cannot
falsify the outcome of the computation. For a precise definition of security,
see [Can97,Can98].

In this paper, we consider information-theoretic security, i.e. the adversary
can use unlimited computational resources. Players are connected pairwise by
secure communication channels in a synchronous network. The necessary and
sufficient conditions for secure multi-party computation to be achievable for all
functions are derived for the following four cases:

– Perfect security, without a broadcast channel, is possible if and only if 3ta +
2tp + tf < n.

– Perfect security, with a broadcast channel, is possible under the same condi-
tion, i.e., broadcast does not help increasing the number of players that can
be corrupted when perfect security is required.
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– Unconditional security (negligible failure probability), without a broadcast
channel, is possible if and only if 2ta + 2tp + tf < n and 3ta + tf < n.

– Unconditional security, with a broadcast channel, is possible if and only if
2ta + 2tp + tf < n.

1.4 Changes in this Corrected Version

Damg̊ard [Dam99] pointed out that the multiplication protocol of [FHM98] for
the model with perfect security is not secure with respect to the weaker condi-
tions 3ta + tp + tf < n and 2ta + 2tp + tf < n given in [FHM98], but only with
respect to the stronger condition 3ta +2tp + tf < n. In this corrected version, we
prove that the multiplication protocol is indeed perfectly secure for this stronger
condition, and additionally, we proof the necessity of this new condition. The
corrections concern Lemma 2, Theorem 1 and 4. The results for unconditional
security (with negligible error probability) are not affected.

1.5 Outline

In Sections 2 and 3 tight bounds on the existence of perfectly secure (Section 2)
or unconditionally secure (Section 3) protocols are given for the mixed model
without fail-corruptions. In Section 4, these bounds are generalized for the mixed
model with fail-corruptions, and the protocols are extended to achieve these
generalized bounds. Some conclusions are given in Section 5.

2 Perfectly Secure Multi-Party Computation

The construction of perfectly secure protocols for the mixed model without fail-
corruptions is based on the protocol of [BGW88] for the active model. We first
give a very brief summary of that protocol, and then present some modifications
needed for tolerating a mixed adversary.

2.1 The Protocol of Ben-Or, Goldwasser, and Wigderson

The protocol of [BGW88] for the active model requires that the function to be
computed is represented as an arithmetic circuit over a finite field (F , +, ∗),
where three types of gates are available: an addition gate takes two inputs and
outputs their sum, a multiplication gate takes two inputs and outputs their
product, and a randomness gate takes no input and outputs a random field
element. The protocol proceeds in three stages: In the input stage, every player
uses verifiable secret sharing (VSS) to share his input among all players. In
the computation stage, the agreed circuit is evaluated gate by gate, where all
intermediate results are shared among the players using VSS. In the final stage,
the shared result is reconstructed.

We briefly describe the subprotocols for verifiable secret sharing and for mul-
tiplication. Let n denote the number of players, and let t denote the upper bound
on the number of players that the adversary may actively corrupt.
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Verifiable secret sharing is based on Shamir’s secret sharing scheme [Sha79].
To every player a unique field element wi is associated, where w is a primitive
n-th root of unity. In the sharing protocol, the dealer randomly selects a two-
dimensional polynomial f(x, y) of degree t in both variables such that f(0, 0) is
the value to be shared, and sends the polynomials fi(x) = f(x, wi) and gi(y) =
f(wi, y) to the i-th player. Then the i-th and the j-th player verify the cross-over
points fi(wj) ?= gj(wi) and gi(wj) ?= fj(wi) and complain about inconsistencies.
Whenever a player recognizes an inconsistency, he asks the dealer to broadcast
the value of the inconsistent cross-over points. Whenever a player receives a
value from the dealer that is not consistent with a previously received value, he
accuses the dealer, who then has to broadcast both polynomials of the accusing
player. Then the player uses these broadcast polynomials as his polynomials.
If more than t players accused the dealer, then clearly the dealer is corrupted
and every player picks the default zero polynomial as the dealer’s polynomial.
Finally, the share of the i-th player is fi(0). This sharing protocol guarantees
that all the shares lie on a polynomial of degree t, and that if the dealer is
honest (uncorrupted), then any t players do not obtain any joint information
about the secret. In the reconstruction protocol, each player sends his share of
the result to those players who should learn this value. Each of them can then
correct faulty shares using the properties of the underlying Reed-Solomon code
[MS81], and interpolate the secret. At most t shares are faulty and the minimal
distance of the Reed-Solomon code with n shares and degree t is n− t−1. Hence
(n− t−1)/2 ≥ t faults can efficiently be corrected and reconstruction is possible.

Linear Functions. Multiplication by scalars and addition of shared values, and
hence the computation of any linear function, can be performed (without com-
munication) by each player doing the corresponding computation on his shares
and keeping the result as a share of the new value.

Multiplication of two shared values is more involved. Here we describe the im-
proved protocol of [GRR98]. First, every player verifiably secret shares both
shares of the two values he holds. Because a corrupted player could secret share
a wrong share, the syndrome of the reshared shares is computed in a distributed
manner (syndrome computing is linear) and is then reconstructed (reconstruc-
tion involves local error-correction for every player). Using this syndrome vector,
each player can derive the error vector and can correct his shares according to the
error vector. Then, each player shares the product of his two factor shares and
proves by a subprotocol that the shared value indeed is the product of his two
factor shares. At this point, every player holds a share of all n product shares,
and as shown in [GRR98] the interpolation of these product shares results in the
product of the two factors. Interpolation is linear and can be computed locally
on the shares of the product shares.
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2.2 Protocol Modifications for the Mixed Model

Lemma 1. For n players and arbitrary thresholds ta and tp satisfying 3ta+tp <
n, there exists a verifiable secret-sharing scheme that is perfectly secure against
a (ta, tp)-adversary.

Proof. The scheme is a variation of the verifiable secret-sharing scheme presented
in [BGW88] whereby the degree of the used polynomials is set to d = ta + tp.
This modification was first proposed in [Dwo90] and [DDWY93]. In the sharing
protocol, the dealer selects a two-dimensional polynomial f(x, y) of degree d
in each variable and sends the polynomials fi(x) and gi(y) to the i-th player.
Then the players verify the cross-over points and complain about inconsistencies.
Whenever a player recognizes that the dealer is misbehaving, he accuses the
dealer. If more than ta players accused the dealer, then clearly the dealer is faulty
and every player picks the default zero polynomial as the dealer’s polynomial.
Therefore, in the reconstruction protocol the parameter t of the maximal number
of errors is set to ta.

Clearly, this scheme tolerates a (ta, tp)-adversary. The complete information
the adversary obtains during the protocol contains at most ta + tp shares, which
gives no information about the secret (unless the dealer is corrupted). On the
other hand, coordinated misbehavior of up to ta players can be tolerated because
in the reconstruction protocol, up to (n−d−1)/2 faulty shares can be corrected
(half of the minimum distance of the underlying Reed-Solomon code), which is
at least ta. ut

Lemma 2. A set of n players can (ta, tp)-securely multiply two shared values if
3ta + 2tp < n.

Proof. The multiplication protocol is along the lines of the multiplication pro-
tocol in [BGW88] (including the improvements of [GRR98]), whereby the VSS
of Lemma 1 with polynomials of degree d = ta + tp is used.

First, every player verifiably secret shares both shares he holds of the two
factors (using the VSS scheme of Lemma 1), then the syndrome of the reshared
shares is distributively computed and reconstructed, and the shares are cor-
rected according to this syndrome. Now, every player pi verifiably shares the
product of his two shares by applying the technique described in [BGW88]:
First, every player pj computes the local product of both share-shares of pi’s
shares. These product share-shares of all players pj define a degree-2d poly-
nomial D(x) with D(0) being pi’s product share. Then the player pi reduces
the degree of D(x) to d by sharing d polynomial D1(x), . . . , Dd(x) and com-
puting C(x) = D(x) − x1D1(x) − . . . − xdDd(x) (cf. [BGW88]), and proves that
the resulting polynomial C(x) has indeed degree d. This technique requires the
condition 2d < n − ta (see [Dam99]). Finally, the players interpolate the prod-
uct [GRR98]. The described protocol is secure as long as the underlying verifi-
able secret-sharing protocol is secure, which is guaranteed for 3ta + tp < n by
Lemma 1. ut
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Theorem 1. A set of n players can compute every function perfectly (ta, tp)-
securely if and only if 3ta + 2tp < n. The computation is polynomial in n and
linear in the size of the circuit. This holds whether or not a broadcast channel is
available.

Proof. (⇐=) As shown in Lemma 1, the verifiable secret-sharing scheme
of [BGW88] can be modified such that a (ta, tp)-adversary is tolerated if
3ta + tp < n. Addition and selection of random field elements need no modi-
fication (except that the VSS scheme of Lemma 1 is used). Due to the condition
3ta + 2tp < n, also multiplication can be performed as explained in Lemma 2.
(=⇒) In order to prove the necessity of 3ta + 2tp < n, assume for the sake of
contradiction that for some ta, tp with 3ta + 2tp ≥ n every function can be
computed perfectly (ta, tp)-securely. Then one can construct a protocol for three
players p1, p2, and p3, where p1 plays for ta + tp players, p2 plays for ta + tp other
players, and p3 plays for the remaining at most ta players. This new protocol is
secure with respect to an adversary that passively corrupts either p1 or p2, or
actively corrupts p3.

Assume that the specification requires to compute the logical AND of two
bits x1 and x2 held by p1 and p2, respectively, and assume for the sake of
contradiction that a protocol for this specification is given. Let T denote the
transcript of the broadcast channel of a run of that protocol (if no broadcast
channel is available, let T = ∅), and let Tij (1 ≤ i < j ≤ 3) denote the transcript
of the channels between pi and pj. Due to the requirement of perfect privacy,
p1 will not send any information about his bit x1 over T12 or over T before he
knows x2 (if p1 knows that x2 = 1 he can reveal x1). Similarly, p2 will not send
any information about x2 over T12 or over T before he knows x1. Hence the only
escape from this deadlock would be to use p3. However, as T12 and T jointly
give no information about x2, a random misbehavior of an actively corrupted p3

(ignore all received messages and send random bits whenever a message must
be sent) would with some (possibly negligible) probability make p1 receive the
wrong output, contradicting the perfect security of the protocol.

3 Unconditionally Secure Multi-Party Computation

We now show that by allowing a negligible rather than zero failure probability,
the bounds for the number of corrupted players can be improved.

Theorem 2. Allowing a negligible failure probability and given a broadcast
channel, a set of n players can compute every function (ta, tp)-securely if and
only if 2ta + 2tp < n. The computation is polynomial in n and linear in the size
of the circuit.

Proof. (⇐=) The protocol of [RB89] tolerates up to ta < n/2 actively corrupted
players. Hence, for all ta and tp that satisfy 2ta + 2tp < n, this protocol is also
(ta, tp)-secure.3 The efficiency of this protocol is proven in [RB89].
3 However, the VSS reconstruction protocol of [RB89] needs a slight modification such

that it is possible to reveal a shared value only to some of the players (the original
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(=⇒) If for some ta and tp satisfying 2ta + 2tp ≥ n, every function were (ta, tp)-
securely computable, then every function would also be securely computable
against a passive majority, contradicting Theorem 2 of [BGW88]. ut
Theorem 3. Allowing a negligible failure probability, without a broadcast chan-
nel, a set of n players can compute every function (ta, tp)-securely if and only if
2ta + 2tp < n and 3ta < n. The computation is polynomial in n and linear in
the size of the circuit.

Proof. (⇐=) The protocol of [RB89] is (ta, tp)-secure if 2ta + 2tp < n. Pro-
vided that ta < n/3, a broadcast channel can be simulated among the players
[LSP82,FM88,GM93]. Simulating broadcast in the protocol of [RB89] yields a
protocol that is (ta + tp)-secure for all ta and tp that satisfy 2ta + 2tp < n and
3ta < n. The efficiency of this protocol immediately follows from the efficiency
of the protocols in [RB89] and in [FM88,GM93].
(=⇒) The necessity of the condition 2ta + 2tp < n has already been shown in
the proof of Theorem 2. On the other hand, let 3ta ≥ n, and suppose that for
every function there exists an unconditionally secure multi-party protocol with
negligible failure probability. Since broadcast is one particular function, there
would also exists a broadcast protocol that is unconditionally secure against one
third of the players, contradicting a result of [LSP82,KY]. ut

4 Multi-Party Computation Tolerating Fail-Corruptions

In this section we generalize the results of the previous two sections by allowing
the adversary to fail-corrupt up to tf players, and we give tight bounds for the
number of actively corrupted, passively corrupted and fail-corrupted players that
can be tolerated (where players that are passively corrupted and fail-corrupted
at the same time must be counted for both thresholds). First, we consider a
perfect model (with or without a broadcast channel), then an unconditional
model with a broadcast channel, and last, an unconditional model without a
broadcast channel.

Theorem 4. A set of n players can compute every function perfectly (ta, tp, tf )-
securely if and only if 3ta+2tp+tf < n. The computation is polynomial in n and
linear in the size of the circuit. This holds whether or not a broadcast channel is
available.

Proof. (⇐=) The protocol described in the proof of Theorem 1 needs further
modifications in order to be (ta, tp, tf )-secure.
Invariant. The degree of the polynomials used for secret sharing is set to
d = ta + tp. The invariant during the computation is that every (intermediate)
value is shared among the players by a polynomial of degree d, and that every
player is committed to his share. This means that whenever a player has to

protocol reveals the secret always to all players in parallel, thus only applies to the
secure function evaluation model).
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reveal his share, every player can verify whether the revealed share is the correct
share or not.
VSS. Note that the described VSS of Lemma 1 either achieves this invariant, or
the dealer is detected to be corrupted: After the sharing protocol, either there
were more than ta accusations against the dealer (in this case, the dealer is dis-
qualified, see below), or every player holds his share, and a share of the share of
each other player (called a share-share). The set of the share-shares of a given
share can be considered as a shared commitment of that share (cf. [CDM98]).
In order to reconstruct the secret, every player must reveal his share by broad-
casting the polynomial used for sharing his share, and every player verifies that
his corresponding share-share really lies on the broadcast polynomial. If not,
the player broadcasts a complaint against the revealing player. If the revealing
player is honest, there are at most ta complaints. Now consider the case that the
revealing player is actively corrupted and broadcasts a wrong polynomial. There
are at most ta + tf players who possibly do not complain even if their shares
do not lie on the broadcast polynomial. However, if the polynomial is wrong,
it differs from the correct polynomial at least at n − d = n − ta − tp positions,
and hence at least (n − ta − tp) − (ta + tf ) complaints are reported, which is
strictly more than ta (since 3ta + 2tp + tf < n). Once every player has revealed
his share, the secret is reconstructed by interpolating the shares for which at
most ta complaints were reported (there are at least n − ta − tf such shares).4

Computations. Addition and other linear functions can easily be computed
on the shared values (preserving the invariant), since both the secret sharing
and the commitments are linear. The multiplication protocol is along the lines
of the protocol described in Lemma 2. Due to the invariant every share is also
shared among the players, and there is no need for having every player share his
factor shares as in [BGW88]. Every player can directly verifiably secret share
his product share and use the technique described in [BGW88] to prove that
this shared value is equal to the product of his two shares (if the player fails
to prove this, he is disqualified; see below). Due to the linearity of the rest of
the computation, the invariant is preserved. Note that, as used in [CDM98], this
multiplication protocol does not involve error correction but error detection (in
contrast to the multiplication protocol of [BGW88]).
Disqualifying players. One major issue of the above protocol is how to deal
with disqualified players. In [BGW88], the disqualified players’ data is recon-
structed (implicitly by computing the error vector). But in this protocol, a dis-
qualified player can either be actively corrupted or fail-corrupted, and his share
must not be reconstructed if the player is fail-corrupted. It turns out that, as

4 This construction only covers global reconstruction where every player learns the
shared secret. If some result must be revealed to only certain players, then the
reconstruction protocol must be slightly modified: Every player sends his share, the
polynomial with which his share was shared (committed), and all his share-shares
to the players who are supposed to learn the output, who then locally determine
which of the shares are correct (at most ta wrong share-shares), and interpolate the
verified shares.
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a consequence of the (corrected) bound 3ta + 2tp + tf < n, data reconstruction
is not needed at all, i.e., that disqualified players’ data can simply be ignored
since all protocol steps can still be carried out correctly even if all actively
and fail-corrupted players are disqualified. For two reasons, the following player
elimination technique of the original paper is still described here although being
obsolete for this particular protocol. First, the same technique will be needed
for the protocol in the scenario with unconditional security (in the proof of
Theorem 6) and, second, it might be an important contribution by itself with
potential applications to different contexts.

If during the verifiable secret sharing protocol or during the multiplication
protocol a player is disqualified, then he is excluded from all further computation.
Generally, the shares of a disqualified player must not be revealed. Indeed, the
shares of up to tf disqualified players can simply be omitted (this is tolerated in
the multiplication protocol). Thus, the first tf times that some player is disquali-
fied the player is excluded from the computation, but no further steps are taken.
If more than tf players are disqualified, then there are at most tf fail-corrupted
players among them, and the other disqualified players (say k) must be actively
corrupted. Hence, among the remaining (non-disqualified) players there are at
most ta − k actively corrupted players. At this point, every intermediate value
is reshared using a scheme for n′ = n − k players, tolerating only t′a = ta − k
actively corrupted players. In order to do so, for every intermediate value, every
player verifiably secret shares his share of that value among the n′ remaining
players by using polynomials of degree d − k, and proves that the shared share
is equal to his original share. This can easily be verified by computing the dif-
ference of these two shares (in a distributive manner, i.e. every player subtracts
one share-share from the other) and by verifying that the difference is zero. Fi-
nally, the secret is interpolated in a distributive manner (interpolation is linear).
This results in every player having a reduced-degree share of the secret which
is committed by a reduced-degree polynomial. If during this degree-reduction
protocol some players refuse to cooperate, these players are also disqualified and
the reduction protocol restarts (with an increased k). The number of restarts is
limited by ta because at most ta + tf players can ever be disqualified.

The broadcast channel used in the protocol can be simulated by the broadcast
protocol of [GP92] tolerating ta active and tf fail corruptions when 3ta + tf < n.
(=⇒) In order to prove the necessity of the conditions of the theorem, assume
that for some ta, tp, and tf there exists for every function a (ta, tp, tf )-secure
protocol among n players. Trivially, each such protocol is also a (ta, tp)-secure
protocol among n′ = n − tf players, simply by considering the case that the
adversary fail-corrupts the last tf players at the very beginning of the protocol.
However, as proven in Theorem 1, a (ta, tp)-secure protocol among n′ players
exists for every function only if the condition 3ta + 2tp < n′ is satisfied, which
implies the conditions of the theorem. ut

The following theorem shows that in the passive model, resilience against
fail-corruptions is for free, i.e. the same bound that holds in the passive model
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also holds in a model in which the adversary may make the passively corrupted
players fail.

Theorem 5. A set of n players can compute every function perfectly securely
with respect to an adversary that may passively corrupt and fail-corrupt up to t
players if and only if 2t < n. The computation is polynomial in n and linear in
the size of the circuit.

Proof. The protocol described in the proof of Theorem 4 achieves this bound
after some slight modifications: The degree of all polynomials is set to d = t, and
whenever a player fails, then his share is reconstructed using the share-shares,
and becomes common knowledge.

Theorem 6. Allowing a negligible failure probability and given a broadcast
channel, a set of n players can compute every function (ta, tp, tf )-securely if
and only if 2ta + 2tp + tf < n. The computation is polynomial in n and linear
in the size of the circuit.

Proof (sketch). (⇐=) The protocol described in Theorem 2 needs to be modified
along the lines of the modifications in the proof of Theorem 4. During the proto-
col, the shares of disqualified players are never reconstructed. Instead, the first
tf disqualified players are simply excluded from the protocol, and their shares
are omitted (are considered as erasures when interpolating). However, after more
than tf players have been disqualified, it is impossible to perform further multi-
plications (there are not enough shares to interpolate the polynomial with double
degree), and therefore all shared values are reshared using polynomials of smaller
degree. In order to do so, the WSS of every share is upgraded to VSS, then the
player verifiably secret shares the same share using VSS with reduced degree
and proves that the same share was reshared. Finally, the secret is reconstructed
in a distributive manner (interpolation is linear), using this new reduced-degree
VSS, which results in each player having shared his reduced-degree share by
WSS. If during this degree-reduction process a player refuses to cooperate, then
this player is also disqualified and the degree-reduction process restarts (where
the degree of the polynomials is decremented once more).
(=⇒) The optimality of the conditions follows directly from the proof of The-
orem 2 by assuming an adversary that corrupts the last tf players at the very
beginning of the protocol (obtaining a protocol among n − tf players that is
(ta, tp)-secure).

Theorem 7. Allowing a negligible failure probability, without a broadcast chan-
nel, a set of n players can compute every function (ta, tp, tf )-securely if and only
if 2ta + 2tp + tf < n and 3ta + tf < n. The computation is polynomial in n and
linear in the size of the circuit.

Proof (sketch). The additional condition 3ta + tf < n allows to simulate the
assumed broadcast channel in the proof of Theorem 6 by a protocol [GP92].
The optimality of the condition follows immediately from the optimality of the
condition in Theorem 6 and of the protocol in [GP92].
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5 Conclusions

We have proposed a new model for multi-party computation that, by consider-
ing the simultaneous presence of actively, passively and fail-corrupted players,
is more general than those in the previous literature. We proved the exact con-
ditions for the existence of unconditionally secure multi-party computation for
four natural cases. Moreover, we gave constructions of efficient protocols for all
cases.

One of the main problems in multi-party computation is that it is not known
a priori which players are corrupted. Trivially, if it is known in advance that a
certain subset of the players are corrupted (the type of corruption is irrelevant),
then the exact conditions for secure protocols to exist are those of this paper
applied to the set of remaining players after elimination of the known cheaters.

It is surprising that regarding fail-corruptions, this condition holds even when
it is not known in advance which players will be fail-corrupted. This follows from
the fact that in all bounds tf appears with coefficient only 1. In contrast, tp ap-
pears with coefficient 2, and hence every passive corruption must be compensated
by one additional non-corrupted player. In the model with exponentially small
error probability and a broadcast channel, misbehavior is detected and hence
active corruptions count equally as passive corruptions. In all other models, ta
appears with coefficient 3, and hence every active corruption must be compen-
sated by two additional non-corrupted players.

Figure 1 summarizes our results. Because the conditions for protocols with
failures are the same as those without failures when the number n of players
is reduced by tf to n′ = n − tf , the bounds are illustrated only in two dimen-
sions (ta and tp) for a constant tf . The brightly shaded area is achievable by
perfectly secure multi-party computation. By accepting an exponentially small
failure probability, one can additionally achieve the semi-dark shaded area. Fi-
nally, if a broadcast channel is available, one can even achieve the dark shaded
area. These bounds are tight.
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Fig. 1. Graphical representation of the results.



14 Matthias Fitzi, Martin Hirt, and Ueli Maurer

For the following considerations we restrict our view to the special case with
no fail-corruptions (tf = 0, and hence n′ = n). The classical results in uncon-
ditional multi-party computation are special cases of the mixed model. The re-
sults of Ben-Or, Goldwasser and Wigderson [BGW88] correspond to the points 1
(passive model) and 2 (active model) in Figure 1. The result of Rabin and Ben-
Or [RB89] corresponds to point 3.

Point 4 (ta = n/3, tp = n/6) illustrates that the results of [BGW88] for the
active as well as for the passive model can be improved. In addition to ta <
n/3 actively corrupted players (point 2), one can tolerate additional tp ≤ n/6
passively corrupted players (point 4). However, this protocol has a negligible
failure probability.

Finally, by approaching point 1 from point 2 in the case of perfect security, we
can improve the resilience for privacy by reducing the resilience for correctness:
In perfectly secure multi-party computation, three additional passive corruptions
can be tolerated instead of two active corruption, thus trading correctness for
privacy.
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