Consensus

Presented by Benjamin Knecht
Mentor: Johannes Schneider
Papers chosen by Peter Widmayer
Outline

- Introduction
- Paper 1: Harmful dogmas
- Paper 2: Agreement with ubiquitous faults
- Conclusion
Neither Node 1 or Node 2 can be sure that the other node has received the acknowledgement.
Introduction

The Leader crashed and Node 3 and 5 didn't get a message. The system cannot decide!
What is Consensus?

- Termination: Every non-faulty node eventually decides
- Agreement: All non-faulty nodes decide on the same value
- Validity: The decided value must be the input of at least one node
In an asynchronous system with $n > 1$ nodes no deterministic algorithm can solve the consensus problem, if there are node failures.

So everybody looks at synchronous systems ...

... or randomized consensus algorithms
Three features of the classic modelling decisions overcomplicate the problem

Those features have gained the status of dogmas:

- Synchrony vs. Fault
- Process vs. Link failures
- Flaws in the definition of consensus

Heard – Of model as new proposal
Dogma 1: Synchrony vs. Fault

- Synchrony model
 - Are processes and links synchronous or asynchronous?

- Fault model
 - Do processes crash? Are the links reliable?

But: Can you really distinguish those two models so easily?
Difference of failure and synchrony issues

Synchrony:
- **A** sends a message to **B**.
- **B** receives the message.

Fault model:
- **A** cannot send a message.
- **B** receives the message.

Same consequence for node **B** in every case.

Synchrony:
- **A** sends a message to **B**.
- **B** receives the message.

Fault model:
- **A** cannot send a message.
- **B** receives the message.

Message **m** is very slow...

Introduction
- Paper 1: Harmful dogmas
- Paper 2: Agreement with ubiquitous faults
- Conclusion
Dogma 1: Synchrony vs. fault

- So called component failure model

Consequences:
- Models with reliable links (unreliable links are ignored)
- Increasing synchrony to handle impossibility
- No investigations for alternative fault models
Dogma 2: Process vs. Link failures

- What is crashing/failing?
- Is there a problem at the sender or receiver?
- Failed components are not trusted any more!

- Point of failure is often unknown
- Failed components may recover
- Not trusting a failed component is harmful in a environment with transient faults
Dogma 3: Definition flaws

- Transmission: Every non-faulty process eventually decides.
- Once a process fails, it doesn't have to terminate anymore, even if it recovers.
- Too weak in presence of transient failures
- Every process eventually decides!
Model proposal: Heard – Of model

- Only transmission failures occur
 - Don't care if something failed or was just too slow
 - Process and link failures are handled the same way
 - Every single process – correct or faulty – has to terminate

- Component failures can be represented by transmission failures

- Crash recovery is handled
Communication failure model

- Faults can happen anywhere
- Recovery after those faults is possible
- Avoids undesirable situations by not pointing fingers
- Synchronous communication \((\alpha, \beta)\) is faulty if \(\alpha \neq \beta\) \((\alpha \text{ is the sent message and } \beta \text{ the received one})\)
- This may change after every clock cycle
- Therefore detection of failures for future predictions is not helpful
Fault types and their combinations

- **Omissions:** \((\alpha, \beta)\): with \(\alpha \neq \Omega = \beta\)
 - Loss of a message

- **Additions:** \((\alpha, \beta)\): with \(\alpha = \Omega \neq \beta\)
 - Creation of message without sending one

- **Corruption:** \((\alpha, \beta)\): with \(\Omega \neq \alpha \neq \beta \neq \Omega\)
 - Alteration of message content

- **Byzantine:** All three of the above occur
Impossibility of strong majorities

- k-agreement problem: at least k nodes decide eventually on the same value
- Strong majority if $k = \left\lceil \frac{n}{2} \right\rceil + 1$
- Minimum degree of a graph G is $d(G)$
- If there are $d(G)$ communication faults (omission, addition, corruption or a combination), a strong majority cannot be reached.
- Same goes for $\left\lceil \frac{d(G)}{2} \right\rceil$ Byzantine faults
Possibility of unanimity

- Unanimity if all nodes agree \(k = n \)
- We allow at most \(f \) faults per clock cycle
- Edge-connectivity \(c(G) \) of graph \(G \) is the minimum number of edges one must remove to disconnect the graph
- Edge-connectivity introduces redundant paths from one node to another and thus can be used for fault tolerant protocols
Solution to omissions

- Assume number of faults \(f \leq c(G) - 1 \)
- A node needs to broadcast its message in each time step until \(T(G) - 1 \)
- Each node receiving a message at time \(t < T(G) \) will broadcast the message until \(T(G) - 1 \)
- Ends after timeout \(T = T^*(G) \)
- \(T^* \) is the minimum timeout value
Solutions to additions

- Each node just sends its result in every time step and leaves no room for additions
- Number of faults doesn't matter
- Terminates after all results propagated through network. That's the diameter $D(G)$ of graph G
 - Timeout: $T = D(G)$
- A Spanning tree solves this nicely
Solution to corruptions

- Number of faults doesn't matter
- If value is 1, propagate it
- If value is 0, wait for messages
- Since no messages are lost or additionally created, receiving a message is information enough
- After $T = D(G)$ decide on your value
- Omissions and corruptions
 - Send value in every clock cycle until $T(G)$
 - Omission won't affect unanimity
 - Only send value if it is 1
 - So messages may be corrupted, but enough information

- Omissions and additions
 - Send in every clock cycle to avoid additions
 - No corruption so messages can be trusted
Additions and corruptions

- Complex problem: Only sending 1's leaves space for additions and sending every clock cycle doesn't work because messages cannot be trusted!

Solution: Time Slice

- Only send 0's during even clock cycles
- Only send 1's during odd clock cycles
- However the problem of additions is not solved
Solution: Reliable Neighbour Transmission

- Use all $c(G)$ paths to your neighbour to send message
- Also send along the path the message should take
- Every receiving node, knows if a path is valid and discards wrong messages
- Correct messages are forwarded for a certain time
- Again unanimity is guaranteed with $f \leq c(G) - 1$
Byzantine faults

- We can again use the Reliable Neighbour Transmission technique
- For $f \leq \left\lfloor \frac{c(G)}{2} \right\rfloor - 1$ Byzantine faults per clock cycle it is possible to achieve unanimity
Tightness

For graphs with $d(G) = c(G)$ the bounds for impossibility and possibility are very tight

- Rings
- Toruses
- Hypercubes
- Complete graphs
- etc.
What about arbitrary graphs?
Performance was not an issue in paper
Really a more practical approach?
Only works for synchronous systems?
Questions?