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Motivation

o activities recognition by automated systems lead to
improvements in our life

 approaches build on intelligent infrastructures or use of
computer vision

« current monitoring solutions are not feasible for a long-
term implementation



Activity recognition using on-body sensing

Common ldeas
Paper 1 and 2
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« ON-body sensors are deployed strategically

« the selection of features and event detection
thresholds play a key role

« prior training from data is required

. to analyze the recognition performance, Precision
and Recall metrics were used



« the goal of each recognition approach is to find with higher
accuracy true positive events

. high impact of false positive and false negative events

hypothesis class
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« Classification of NULL is a tough problem for any
classifier

« Different fusion methods are used for accurate
classification:

a) comparison of Top Choices (COMP)

b) methods based on class rankings
<[Highest rank (HR)

Borda Count
Logistic Regression (LR)

c) agreement of the detectors (AGREE)



Activity Recognition of Assembly Tasks
Paper 1



. recognize the use of different
tools involved in an assembly
task in a wood workshop

. recognize of activities that are
characterized by a hand motion
and an accompanying sound

« microphones and accelerometers
as on-body sensors



Broken up into segments

LDA distance and HMM likelihood,
carried out over these segments

Covert into class ranking; combine
using fusion methods
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Sound analysis used to identify
relevant segments

Using only IA produce fragmented
results

A different method of “smoothing”
using majority vote was applied

A relatively large window (1.5 s)
was chosen to reflect the typical
timescale of interest activities

i

-

Audio Ch

L d

1. [ Audio Ch.,

L .

FFT

LDA

[~ ]

L |

Pin. D

st

65

i |

Sound

Majority Viote

i |

Segment info

based segmentation



Sound Ch.1&2

|A output

classification

Majority vole

Jamie Ward, Diss. ETH 16520



sound classification

need when higher information
about a segment is required

use the LDA distances;
provides a list of class distance
for each segment

acceleration classification
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Segmentation Results

true positive t|me TP
total positive time TP+FN

Recall =

truie positive time TP

hypothesized positivet e TP+FP

Precision =



Sound Accel, COMP LR
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Continuous R and P for each Positive

Class and the Average of These;
User-Dependent Case

Continuous Time Results:

__correct positive time_ correct

Recall — ,
total positive time  TP+FN

correct positive time _ correct

Precision = : — ,
hypothesized positive time TP+FP

Three methods of evaluation:
user-dependent
user-independent (most severe)
user-adapted



Lessons Learned

« using intensity differences works relatively well for
detection of activities; however, short fragmented
segments (apply smoothing)

o activities are better recognized using a fusion of
classifiers

 less performance in user independent case; fused
classifiers solve this problem.



« over one billion of overweight and
400 mil obese patients worldwide

« several key risk factors have been
identified, controlled by dieting
behavior

« Minimizing individual risk factors is a
preventive approach to fight the origin
of diet-related diseases

W TO LOOSE WEIGHT




' L — Ear microphone

Sensor collar

er / (EMG and microphone)
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Three aspects of dietary activity

o characteristic arm and trunk
movements associated with the

intake of foods Upper body

inertial sensors

« chewing of foods, recording the
food breakdown sound

« swallowing activity

Sensor positioning at the body



. Segmentation |
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Performance measurement

Recogrnised evernts
Recall = '

Relevarnt evertts

P . Recognised evernts
FectiSion = :

Retrieved evernts

=> perfect accuracy
=> 0 insertion errors
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Chewing Recognition
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Swallowing recognition

Precision
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| esson learned

o food intake movements recognized with good accuracy

« chewing cycles were identified well; Still low detection
performance with low amplitude chewing sounds

o it provides an indication for swallowing; Still incurs
many insertion errors



Conclusion of Paper 1 and 2

Pluses

« recognize different activities with good accuracy
« concepts used in “real-life” applications
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« long term functionality




Conclusion of Paper 1 and 2

Minuses

 a lot of training

sensitive to features & event threshold
selection

assumptions on NULL class

« uncomfortable systems for long-term use




However,
aspects like user attention and intentionality
cannot
be picked-up by usually sensors deployed



Recognition using EOG Goggles
Paper 3



|dentify eye gestures using EOG signals;
Electrooculography (EOG) instead video cameras;
Steady electric potential field from eyes;

Alternate saccadic eye movement and fixations;

Physical activities leads to artefacts;
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EOG gesture recognition

blink & saccade detection

g

blink removal

g

stream of saccades events

median filter used to
compensate artefacts



Eye gestures for stationary HCI

Level 1 I Level 2 Level 3 Level 4 |
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RIR DRUL RDLU | RLRLRL
Level 5 | Level 6 Level 7 Level 8 |
L S o ) —
JUlU DRTRD7 1397 DDR7L9

Eye gestures of increasing complexity

Gesture | Tp[ms| | Ts[ms| | Ts/Tr | Ace[%]
RIR 3370 2890 0.858 85
DRUL 4130 3490 0.845 90
RDLU 3740 3600 0.963 93
RLRLRL | 6680 5390 | 0.807 90
3UIU 4300 3880 0.902 89
DR7RD7 | 12960 | 5650 | 0.436 83
1379 6360 3720 0.585 84
DDR7L9 | 25400 | 5820 | 0.229 83

T+: total time spent to complete the gesture

Tg: success time spent only on successful attempts

Acc: accuracy




Eye gestures for mobile HCI

100}

. perform different eye movement
on a head-up display

« investigate how artefacts can be
detected and compensated

Mumber of Detected Saccades

70+
B b

« an adapted filter performs well ol

than a filter using a fixed window o

(a) (b) (c) (d) (e) (f)

(a) — (f) type of filter/medium used



| esson learned

eye gesture recognition possible with EOG
good accuracy of results in static scenarios
artefacts may dominate the signal

more complex algorithms for mobile scenarios



Conclusion of Paper 3

Pluses

. treat aspects which encompasses mere than physical activity

« Mmuch less computation power

Minuses

« uncomfortable for long-term use

o difficult for testing



Questions ?




